Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 57: e13173, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1528100

RESUMO

Polystyrene nanoplastics (PS-NPs) are ubiquitous environmental pollutants that can cause oxidative stress in various organs, including the liver. Didymin is a dietary flavanone that displays multiple pharmacological activities. Therefore, the present study evaluated the palliative role of didymin against PS-NPs-induced hepatic damage in rats. Albino rats (n=48) were randomly distributed into 4 groups: control, PS-NPs treated group, PS-NPs + didymin co-administered group, and didymin supplemented group. After 30 days, PS-NPs intoxication lowered the expression of Nrf-2 and anti-oxidant genes [catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), glutathione-S-transferase (GST), and heme oxygenase-1 (HO-1)], whereas the expression of KEAP1 kelch like ECH associated protein 1 (Keap-1) was increased. PS-NPs exposure also reduced the activities of anti-oxidants enzymes (CAT, SOD, GPx, GSR, GST, GSH, and OH-1), while malondialdehyde (MDA) and reactive oxygen species (ROS) levels were increased. The levels of alanine transaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were increased in PS-NPs-exposed rats. Moreover, inflammatory indices [interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2)] were increased in PS-NPs-exposed rats. Furthermore, PS-NPs intoxication increased the expressions of apoptotic markers including Bax and Caspase-3, as well as reducing Bcl-2 expression. The histopathological analysis showed significant damage in PS-NPs-treated rats. However, didymin supplementation ameliorated all the PS-NPs-induced damage in the liver of rats. Therefore, it was concluded that didymin can act as a remedy against PS-NPs-induced liver toxicity due to its anti-apoptotic, anti-oxidant, and anti-inflammatory activities.

2.
Journal of Environmental and Occupational Medicine ; (12): 728-736, 2023.
Artigo em Chinês | WPRIM | ID: wpr-976522

RESUMO

Polystyrene nanoplastics (PS-NPs) are widely used in industry, pharmaceutical and consumer packaging materials, and medical products. The biological health impacts of PS-NPs are receiving increasing attention. Therefore, it is necessary to conduct a literature review of in vitro and in vivo experimental studies from a biological mechanism perspective. Based on the latest research results at home and abroad, this review introduced the characteristics and cell internalization of PS-NPs in cytotoxicity experiments, and summarized the effects of PS-NPs on cytotoxic targets such as mitochondria, lysosomes, proteins, and DNA. In addition, the influencing factors of the health effects of PS-NPs were analyzed from the aspects of physical and chemical properties and cell types. Finally, by discussing the current research hotspots of cytotoxicity mechanism and biological effects, it was anticipated to provide a reference for the health risk management and biological safety assessment of PS-NPs.

3.
Chinese Journal of Biotechnology ; (12): 1188-1201, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970432

RESUMO

To investigate the formation of polystyrene nanoplastic-plant protein corona and its potential impact on plants, three differently modified polystyrene nanoplastics with an average particle size of 200 nm were taken to interact with the leaf proteins of Impatiens hawkeri for 2 h, 4 h, 8 h, 16 h, 24 h, and 36 h, respectively. The morphological changes were observed by scanning electron microscopy (SEM), the surface roughness was determined by atomic force microscopy (AFM), the hydrated particle size and zeta potential were determined by nanoparticle size and zeta potential analyzer, and the protein composition of the protein corona was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteins were classified in terms of biological processes, cellular components, and molecular functions to study the adsorption selection of nanoplastics to proteins, investigate the formation and characteristics of polystyrene nanoplastic-plant protein corona and predict the potential impact of protein corona on plants. The results showed that the morphological changes of the nanoplastics became clearer as the reaction time extends, as evidenced by the increase in size and roughness and the enhancement of stability, thus demonstrating the formation of protein corona. In addition, the transformation rate from soft to hard protein corona was basically the same for the three polystyrene nanoplastics in the formation of protein corona with leaf proteins under the same protein concentration conditions. Moreover, in the reaction with leaf proteins, the selective adsorption of the three nanoplastics to proteins with different isoelectric points and molecular weights differed, and the particle size and stability of the final formed protein corona also differed. Since a large portion of the protein fraction in protein corona is involved in photosynthesis, it is hypothesized that the formation of the protein corona may affect photosynthesis in I. hawkeri.


Assuntos
Poliestirenos/química , Coroa de Proteína/química , Microplásticos , Proteínas de Plantas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA