Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.952
Filtrar
1.
Rev. argent. coloproctología ; 35(1): 45-48, mar. 2024. ilus
Artigo em Espanhol | LILACS | ID: biblio-1551689

RESUMO

El tumor neuroectodérmico maligno del tracto gastrointestinal es una neoplasia rara con pocos casos reportados en la literatura, especialmente en América Latina. Descrito por primera vez en 2003, se trata de una entidad sin tratamiento estandarizado y de pobre pronóstico. Se presenta el caso de una paciente de 22 años de edad que acude a la consulta por dolor abdominal, anemia y masa abdominal palpable. Luego de estudios pertinentes se decide la conducta resectiva y el posterior tratamiento oncológico. (AU)


Malignant gastrointestinal neuroectodermal tumor (GNET), formerly known as clear cell sarcoma of the gastrointestinal tract, is an extremely rare tumor of mesenchymal origin, which presents great microscopic and molecular similarity to clear cell sarcoma found in other parts of the body, such as tendons and aponeurosis. It is characterized by its rapid evolution, high recurrence rate and frequent diagnosis as metastatic disease.1,2 (AU)


Assuntos
Humanos , Feminino , Adulto Jovem , Sarcoma de Células Claras/patologia , Tumores Neuroectodérmicos/patologia , Neoplasias Gastrointestinais/diagnóstico , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Imuno-Histoquímica , Proteínas S100/análise , Neoplasias Gastrointestinais/cirurgia , Íleo/cirurgia
2.
Arch. argent. pediatr ; 122(1): e202310061, feb. 2024. tab, ilus
Artigo em Inglês, Espanhol | BINACIS, LILACS | ID: biblio-1525854

RESUMO

El síndrome de Wiskott-Aldrich es un error innato de la inmunidad de herencia ligada al cromosoma X, producido por variantes en el gen que codifica la proteína del síndrome de Wiskott-Aldrich (WASp). Reportamos el caso clínico de un paciente de 18 meses con diagnóstico de Wiskott-Aldrich que no presentaba donante antígeno leucocitario humano (HLA) idéntico y recibió un trasplante de células progenitoras hematopoyéticas (TCPH) con donante familiar haploidéntico. La profilaxis para enfermedad de injerto contra huésped incluyó ciclofosfamida (PT-Cy). El quimerismo del día +30 fue 100 % del donante y la evaluación postrasplante de la expresión de la proteína WAS fue normal. Actualmente, a 32 meses del trasplante, presenta reconstitución hematológica e inmunológica y quimerismo completo sin evidencia de enfermedad injerto contra huésped. El TCPH haploidéntico con PT-Cy se mostró factible y seguro en este caso de síndrome de WiskottAldrich en el que no se disponía de un donante HLA idéntico.


Wiskott-Aldrich syndrome (WAS) is an X-linked genetic disorder caused by mutations in the gene that encodes the Wiskott-Aldrich syndrome protein (WASp). Here, we report the clinical case of an 18-month-old boy diagnosed with Wiskott-Aldrich syndrome, who did not have an HLA-matched related or unrelated donor and was treated successfully with a hematopoietic stem cell transplant (HSCT) from a haploidentical family donor. Graft-versus-host disease (GvHD) prophylaxis included post-transplant cyclophosphamide (PT-Cy). At day +30, the peripheral blood-nucleated cell chimerism was 100% and the WAS protein had a normal expression. Currently, at month 32 post-transplant, the patient has hematological and immune reconstitution and complete donor chimerism without evidence of GvHD. HSCT with PT-Cy was a feasible and safe option for this patient with WAS, in which an HLA matched donor was not available.


Assuntos
Humanos , Masculino , Lactente , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Transplante de Medula Óssea/efeitos adversos , Ciclofosfamida
3.
Med. U.P.B ; 43(1): 94-106, ene.-jun. 2024. ilus, tab
Artigo em Espanhol | LILACS, COLNAL | ID: biblio-1531520

RESUMO

La infección por el virus SARS-CoV-2, conocida como COVID-19, ha causado alta morbilidad y mortalidad en el mundo. Después de haber descifrado el código genético del virus y haber desarrollado un gran trabajo investigativo en la creación de vacunas, con diversas estrategias de acción, se ha logrado disminuir la morbi mortalidad. Fue necesario acelerar el proceso de producción de vacunas, lo cual estuvo facilitado por el avanzado conocimiento científico en el campo de la genética y la virología, para brindar a la especie humana una protección eficaz y segura contra la agresiva y progresiva infección. Las vacunas se clasifican de acuerdo con su mecanismo de acción, existen vacunas basadas en vectores virales que no se replican, vacunas recombinantes, otras basadas en virus atenuados y virus inactivos, y (la gran novedad de la ciencia actual) las vacunas basadas en ARN mensajero y ADN. Estas últimas han demostrado una gran eficacia y seguridad en la prevención de la infección por el SARS-CoV-2, también han impactado de manera fuerte, por lo que han reducido la infección y la mortalidad en la población. En consecuencia, cada día que pasa desde que se inició el periodo de vacunación mundial, se evidencia una reducción en la curva de contagio y mortalidad por COVID-19.


The infection produced by the SARS-CoV-2 virus, known as COVID-19, has caused high morbidity and mortality across the world. After having deciphered the virus's genoma and carried out investigative endeavors that led to the creation of a variety of vaccines with different mechanisms of action, it has been possible to decrease the morbidity and mortality associated with the virus. It was necessary to accelerate the vaccine production process, which was facilitated by advanced scientific knowledge within the disciplines of genetics and virology, in order to provide the human species with a safe and effective form of protection against the aggressive and progressive infection. Vaccines are classified differently depending on their action mechanisms: there are some based on non-replicating viral vectors, recombinant vaccines, ones that are based on attenuated or inactivated viruses, and (the greatest novelty of current scientific developments) vaccines based on DNA and messenger RNA. The latter has demonstrated significant efficacy and safety in the prevention of the SARS-CoV-2 infection as observed in preliminary studies, and they have meaningfully impacted the population by reducing the rates of infection and mortality. As a result, decreased levels of spread of and mortality from COVID-19 have been evidenced across the globe following the beginning of the vaccine distribution period.


A infecção pelo vírus SARS-CoV-2, conhecido como COVID-19, tem causado elevada morbidade e mortalidade no mundo. Depois de ter decifrado o código genético do virus e de ter realizado um grande trabalho de investigação na criação de vacinas, com diversas estratégias de ação, a morbilidade e a mortalidade foram reduzidas. Foi necessário acelerar o processo de produção de vacinas, facilitado por conhecimentos científicos avançados no domínio da genética e da virologia, para proporcionar à espécie humana uma proteção eficaz e segura contra a infecção agressiva e progressiva. As vacinas são classificadas de acordo com seu mecanismo de ação, existem vacinas baseadas em vetores virais que não se replicam, vacinas recombinantes, outras baseadas em virus atenuados e vírus inativos, e (a grande novidade da ciência atual) vacinas baseadas em RNA mensageiro e ADN. Estas últimas demonstraram grande eficácia e segurança na prevenção da infecção por SARS-CoV-2, mas também tiveram um forte impacto, razão pela qual reduziram a infecção e a mortalidade na população. Consequentemente, a cada dia que passa desde o início do período global de vacinação, fica evidente uma redução na curva de contágio e mortalidade por COVID-19.


Assuntos
Humanos
4.
Braz. j. biol ; 84: e256732, 2024. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364524

RESUMO

Germin-like proteins (GLPs) play an important role against various stresses. Vitis vinifera L. genome contains 7 GLPs; many of them are functionally unexplored. However, the computational analysis may provide important new insight into their function. Currently, physicochemical properties, subcellular localization, domain architectures, 3D structures, N-glycosylation & phosphorylation sites, and phylogeney of the VvGLPs were investigated using the latest computational tools. Their functions were predicted using the Search tool for the retrieval of interacting genes/proteins (STRING) and Blast2Go servers. Most of the VvGLPs were extracellular (43%) in nature but also showed periplasmic (29%), plasma membrane (14%), and mitochondrial- or chloroplast-specific (14%) expression. The functional analysis predicted unique enzymatic activities for these proteins including terpene synthase, isoprenoid synthase, lipoxygenase, phosphate permease, receptor kinase, and hydrolases generally mediated by Mn+ cation. VvGLPs showed similarity in the overall structure, shape, and position of the cupin domain. Functionally, VvGLPs control and regulate the production of secondary metabolites to cope with various stresses. Phylogenetically VvGLP1, -3, -4, -5, and VvGLP7 showed greater similarity due to duplication while VvGLP2 and VvGLP6 revealed a distant relationship. Promoter analysis revealed the presence of diverse cis-regulatory elements among which CAAT box, MYB, MYC, unnamed-4 were common to all of them. The analysis will help to utilize VvGLPs and their promoters in future food programs by developing resistant cultivars against various biotic (Erysiphe necator and in Powdery Mildew etc.) and abiotic (Salt, drought, heat, dehydration, etc.) stresses.


As proteínas do tipo germin (GLPs) desempenham um papel importante contra vários estresses. O genoma de Vitis vinifera L. contém 7 GLPs; muitos deles são funcionalmente inexplorados. No entanto, a análise computacional pode fornecer informações importantes sobre sua função. Atualmente, as propriedades físico-químicas, localização subcelular, arquitetura de domínio, estruturas 3D, sítios de N-glicosilação e fosforilação e estudos filogenéticos dos VvGLPs foram conduzidos usando as ferramentas computacionais mais recentes. Suas funções foram previstas usando a ferramenta Search para recuperação de genes/proteínas em interação (STRING) e servidores Blast2Go. A maioria dos VvGLPs são extracelulares (43%) na natureza, mas também mostraram expressão periplasmática (29%), na membrana plasmática (14%) e específica para mitocôndrias ou cloroplastos (14%). A análise funcional previu atividades enzimáticas únicas para essas proteínas, incluindo terpeno sintase, isoprenoide sintase, lipoxigenase, fosfato permease, receptor quinase e hidrolases geralmente mediadas por cátion Mn +. VvGLPs mostraram similaridade na estrutura geral, forma e posição do domínio cupin. Funcionalmente, os VvGLPs controlam e regulam a produção de metabólitos secundários para lidar com vários estresses. Filogeneticamente, VvGLP1, -3, -4, -5 e VvGLP7 mostraram maior similaridade devido à duplicação, enquanto VvGLP2 e VvGLP6 revelaram uma relação distante. A análise do promotor revelou a presença de diversos elementos cis-reguladores, entre os quais CAAT box, MYB, MYC, sem nome-4, sendo comum a todos eles. A análise ajudará a utilizar VvGLPs e seus promotores em programas alimentares futuros, desenvolvendo cultivares resistentes contra vários estresses bióticos (Erysiphe necator e no oídio, etc.) e abióticos (sal, seca, calor, estresse hídrico, etc.).


Assuntos
Estresse Fisiológico/genética , Proteínas , Vitis/genética
5.
Chinese journal of integrative medicine ; (12): 243-250, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1010328

RESUMO

OBJECTIVE@#To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.@*METHODS@#Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.@*RESULTS@#DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).@*CONCLUSIONS@#DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.


Assuntos
Camundongos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases/metabolismo , Interleucina-1beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Claudina-5/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/patologia , Interleucina-6/metabolismo , Medicamentos de Ervas Chinesas
6.
Chinese journal of integrative medicine ; (12): 230-242, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1010324

RESUMO

OBJECTIVE@#To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.@*METHODS@#A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.@*RESULTS@#FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).@*CONCLUSION@#FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Assuntos
Camundongos , Animais , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Wolfiporia , Lipopolissacarídeos/farmacologia , Sepse/complicações , Transdução de Sinais , Inflamação/tratamento farmacológico , Radioisótopos de Oxigênio
7.
Chinese journal of integrative medicine ; (12): 213-221, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1010320

RESUMO

OBJECTIVE@#To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.@*METHODS@#HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.@*RESULTS@#HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).@*CONCLUSION@#HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.


Assuntos
Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , RNA Mensageiro/genética , Movimento Celular , Linhagem Celular Tumoral , Chalcona/análogos & derivados , Quinonas
8.
Chinese Journal of Lung Cancer ; (12): 1-12, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1010105

RESUMO

BACKGROUND@#Radiation therapy is one of the most common treatments for non-small cell lung cancer (NSCLC). However, the insensitivity of some tumor cells to radiation is one of the major reasons for the poor efficacy of radiotherapy and the poor prognosis of patients, and exploring the underlying mechanisms behind radioresistance is the key to solving this clinical challenge. This study aimed to identify the molecules associated with radioresistance in lung adenocarcinoma (LUAD), identified thyroid hormone receptor interactor 13 (TRIP13) as the main target initially, and explored whether TRIP13 is related to radioresistance in LUAD and the specific mechanism, with the aim of providing theoretical basis and potential targets for the combination therapy of LUAD patients receiving radiotherapy in the clinic.@*METHODS@#Three datasets, GSE18842, GSE19188 and GSE33532, were selected from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (|log FC|>1.5, P<0.05) in each of the three datasets using the R 4.1.3 software, and then Venn diagram was used to find out the differentially expressed genes common to the three datasets. The screened differential genes were then subjected to protein-protein interaction (PPI) analysis and module analysis with the help of STRING online tool and Cytoscape software, and survival prognosis analysis was performed for each gene with the help of Kaplan-Meier Plotter database, and the TRIP13 gene was identified as the main molecule for subsequent studies. Subsequently, the human LUAD cell line H292 was irradiated with multiple X-rays using a sub-lethal dose irradiation method to construct a radioresistant cell line, H292DR. The radioresistance of H292DR cells was verified using cell counting kit-8 (CCK-8) assay and clone formation assay. The expression levels of TRIP13 in H292 and H292DR cells were measured by Western blot. Small interfering RNA (siRNA) was used to silence the expression of TRIP13 in H292DR cells and Western blot assay was performed. The clone formation ability and migration ability of H292DR cells were observed after TRIP13 silencing, followed by the detection of changes in the expression levels of proteins closely related to homologous recombination, such as ataxia telangiectasia mutated (ATM) protein.@*RESULTS@#Screening of multiple GEO datasets, validation of external datasets and survival analysis revealed that TRIP13 was highly expressed in LUAD and was associated with poor prognosis in LUAD patients who had received radiation therapy. And the results of gene set enrichment analysis (GSEA) of TRIP13 suggested that TRIP13 might be closely associated with LUAD radioresistance by promoting homologous recombination repair after radiation therapy. Experimentally, TRIP13 expression was found to be upregulated in H292DR, and silencing of TRIP13 was able to increase the sensitivity of H292DR cells to radiation.@*CONCLUSIONS@#TRIP13 is associated with poor prognosis in LUAD patients treated with radiation, possibly by promoting a homologous recombination repair pathway to mediate resistance of LUAD cells to radiation.


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares/radioterapia , Adenocarcinoma de Pulmão/radioterapia , Contagem de Células , Terapia Combinada , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ciclo Celular
9.
Chinese Journal of Biotechnology ; (12): 269-279, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1008094

RESUMO

Plant bioreactor is a new production platform for expression of recombinant protein, which is one of the cores of molecular farming. In this study, the anti DYKDDDDK (FLAG) antibody was recombinantly expressed in tobacco (Nicotiana benthamiana) and purified. FLAG antibody with high affinity was obtained after immunizing mice for several times and its sequence was determined. Based on this, virus vectors expressing heavy chain (HC) and light chain (LC) inoculated into Nicotiana benthamiana leaves by using Agrobacterium-mediated delivery. Accumulation of the HC and LC was analyzed by SDS/PAGE followed by Western blotting probed with specific antibodies from 2 to 9 days postinfiltration (dpi). Accumulation of the FLAG antibody displayed at 3 dpi, and reached a maximum at 5 dpi. It was estimated that 66 mg of antibody per kilogram of fresh leaves could be obtained. After separation and purification, the antibody was concentrated to 1 mg/mL. The 1:10 000 diluted antibody can probe with 1 ng/mL FLAG fused antigen well, indicating the high affinity of the FLAG antibody produced in plants. In conclusion, the plant bioreactor is able to produce high affinity FLAG antibodies, with the characteristics of simplicity, low cost and highly added value, which contains enormous potential for the rapid and abundant biosynthesis of antibodies.


Assuntos
Animais , Camundongos , Anticorpos , Nicotiana/genética , Agrobacterium/genética , Reatores Biológicos , Western Blotting
10.
Chinese Journal of Biotechnology ; (12): 150-162, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1008086

RESUMO

Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.


Assuntos
RNA , Solanum lycopersicum/genética , Fotossíntese/genética , Clorofila , Proteínas de Ligação a RNA/genética
11.
Chinese Journal of Biotechnology ; (12): 63-80, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1008080

RESUMO

The BTB (broad-complex, tramtrack, and bric-à-brac) domain is a highly conserved protein interaction motif in eukaryotes. They are widely involved in transcriptional regulation, protein degradation and other processes. Recently, an increasing number of studies have shown that these genes play important roles in plant growth and development, biotic and abiotic stress processes. Here, we summarize the advances of these proteins ubiquitination-mediated development and abiotic stress responses in plants based on the protein structure, which may facilitate the study of this type of gene in plants.


Assuntos
Eucariotos , Desenvolvimento Vegetal/genética , Proteólise , Ubiquitinação
12.
Chinese Journal of Biotechnology ; (12): 35-52, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1008078

RESUMO

WRKYs is a unique family of transcription factors (TFs) in plants, and belongs to the typical multifunctional regulator. It is involved in the regulation of multiple signaling pathways. This type of transcription factor is characterized to contain about 60 highly conservative amino acids as the WRKY domain, and usually also has the Cys2His2 or Cys2His-Cys zinc finger structure. WRKYs can directly bind to the W-box sequence ((T)(T) TGAC (C/T)) in the promoter region of the downstream target gene, and activate or inhibit the transcription of the target genes by interacting with the target protein. They may up-regulate the expression of stress-related genes through integrating signal pathways mediated by abscisic acid (ABA) and reactive oxygen species (ROS), thus playing a vital role in regulating plant response to abiotic stresses. This review summarizes the advances in research on the structure and classification, regulatory approach of WRKYs, and the molecular mechanisms of WRKYs involved in response to drought and salt stresses, and prospects future research directions, with the aim to provide a theoretical support for the genetic improvement of crop in response to abiotic stresses.


Assuntos
Fatores de Transcrição/genética , Ácido Abscísico , Aminoácidos , Secas , Estresse Fisiológico/genética
13.
Journal of Clinical Hepatology ; (12): 397-401, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1007260

RESUMO

In recent years, NOD-like receptor protein 3 (NLRP3) inflammasome in tumors has become a research hotspot, especially in melanoma, colorectal cancer, lung cancer, and breast cancer, and more and more evidence has shown that inflammation plays a role in the development, progression, angiogenesis, and invasion of cancer. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and there are still controversies over the role of NLRP3 inflammasome in the development and progression of HCC. Therefore, this article reviews the potential impact of NLRP3 inflammasome in the progression of HCC and its mechanism of action in anticancer therapy, and it is believed that NLRP3 inflammasome can be used as an effective therapeutic target for HCC patients.

14.
Chinese Journal of Biologicals ; (12): 221-226, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006861

RESUMO

@#Objective To develop and verify a double-antibody sandwich ELISA method for the detection of process-specific E.coli residual protein in recombinant biological preparations.Methods Taking the production and purification process of glucagon-like peptide(GLP)expressed by E.coli as the specific process model,the same process was used to intercept the residual protein of empty E.coli(normal E.coli that does not express recombinant protein). One female New Zealand white rabbit and six female Kunming mice were immunized with the residual protein as the immunogen. Using the IgG antibody purified from rabbit immune serum as the coating antibody,mouse immune serum as the second sandwich antibody,and antimouse IgG-HRP as the enzyme-labeled secondary antibody,a double antibody sandwich ELISA method for process-specific residual protein of E.coli was established. The specificity,accuracy and precision of the method were verified,and the limit of detection(LOD)was determined. Simultaneously,the developed method and the commercial E.coli host protein residue detection kit were used to quantitatively determine the residual protein of purified GLP preparation.Results After a series of gradient dilution of process-specific residual protein with known concentration,the sensitivity of this ELISA method reached 338 pg/mL. No cross reaction occurred in the detection of CHO and yeast cell lysis protein by this method,the recoveries of samples with low,medium and high concentrations were all in the range of 80% — 120%,and the intra-assay and inter-assay CVs of the empty E.coli interception standard with low,medium and high concentrations were all less than15%. For the residual protein in GLP preparation,about 62% of the residual proteins were not detected by the commercial non-process-specific ELISA kit compared with the total amount of residual proteins detected by the developed method,and these residual proteins should be the process-specific residual proteins.Conclusion The double antibody sandwich ELISA method developed in this study has high sensitivity,strong specificity,good accuracy and precision for the detection of process-specific E.coli residual protein,which can meet the detection requirements that the residual protein is less than0. 01% — 0. 1% in biological preparations.

15.
Chinese Journal of Biologicals ; (12): 143-150, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006852

RESUMO

@#Objective To investigate the effect of microparticles(MPs)derived from bone marrow mesenchymal stem cells(BMSCs) on myocardial hypertrophy and its mechanism.Methods The osteogenic differentiation and adipogenic differentiation of mesenchymal stem cells(MSCs) were induced. After isolation and purification,the morphological characteristics were observed by transmission electron microscope,and the MPs surface antigen was identified by flow cytometry. Myocardial hypertrophy model was induced by using isoprenaline(ISO)in rats,which were measured for the cardiac structure and function by echocardiography,and then detected for various indexes of the heart and isolated left ventricle. Single ventricular myocytes of rats were acutely isolated and divided into control group(Control group),cardiomyocyte hypertrophy group(ISO group),MPs group(MPs group),and MPs supernatant group(Supernatant group). The mRNA expressions of atrial natriuretic peptide(ANP)and B-type natriuretic peptide(BNP)were detected by qRTPCR. The expression levels of calmodulin-dependent protein kinaseⅡ(CaMKⅡ)and phosphorylated calmodulin-dependent protein kinaseⅡ(p-CaMKⅡ)were detected by ELISA. The L-type calcium current(LCa-L)in single ventricular myocyte of various groups was recorded by whole-cell patch clamp.Results The bone nodules of MSCs osteogenic differentiation turned red after alizarin red staining,and lipid droplets of adipogenic differentiation turned red after oil red O staining;Under transmission electron microscope,MPs membrane had a complete structure,a clear outline and a diameter of about200 nm;The positive rates of CD29 and CD90 on the surface of MPs were(98. 24 ± 0. 82)% and(97. 69 ± 1. 83)%,respectively. Compared with Control group,the left ventricular end diastolic dimension(LVEDD)reduced signifi-cantly(t =5. 065,P < 0. 05),while the interventricular septum end-diastolic dimension(IVSd),left ventricular posterior wall dimension(LVPWd),heart weight to body weight ratio(HW/BW),and heart weight to tibial length ratio(HW/Tibia)significantly increased in ISO group(t = 4. 013,2. 368,4. 392,5. 043 and 6. 120,respectively,each P < 0. 05),indicating that the hypertrophic model was successfully established. The expression levels of ANP and BNP mRNA in hypertrophic cardiomyocytes of rats in ISO group were significantly higher than those in Control group(t = 25. 120 and18. 261,respectively,each P < 0. 01);While the expression levels of ANP and BNP mRNA in MPs group significantly reduced after incubation with 48 μg/mL MPs for 48 h compared with ISO group(t = 12. 110 and 3. 526,respectively,each P < 0. 05);The expression levels of CaMK Ⅱand p-CaMKⅡ in ISO group were significantly higher than those in Control group(t = 3. 278 and 4. 181,respectively,each P < 0. 05),while the expression of p-CaMK Ⅱ in MPs group decreased significantly(t = 5. 420,P < 0. 05);The calcium current density in ISO group was significantly higher than that in Control group(t = 15. 261,P < 0. 01),while that in MPs group was significantly lower than that in ISO group(t =6. 216,P < 0. 05).Conclusion MSC-MPs can significantly inhibit ISO-induced cardiomyocyte hypertrophy in rats,which is related to its down-regulation of cardiomyocyte CaMKⅡ and inhibition of L-type calcium channel.

16.
China Pharmacy ; (12): 296-303, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006613

RESUMO

OBJECTIVE To investigate the effect of berberine on ferroptosis in MG63 osteosarcoma cells and its mechanism. METHODS Using cells without drug treatment as control, the cell viability, proliferation, the related indexes of ferroptosis [nuclear proliferation associated-antigen (Ki67), mitochondrial ultrastructure, ferric ion (Fe2+), reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH)], the protein expression of signal transducer and activator of transcription 3 (STAT3), tumor protein 53 (p53), and solute carrier family 7 member 11 (SLC7A11) were detected after being treated with different concentrations of berberine. Cells were transfected with p53 siRNA and then assigned to the control group, p53 siRNA group, berberine group, and p53 siRNA+berberine group to explore the role of p53 in berberine-induced ferroptosis. After 24 h incubation with 10.0 μmol/L berberine, the protein expressions of p53 and SLC7A11, the levels of mitochondrial membrane potential, GSH, and MDA content were determined. Cells were transfected with STAT3 overexpressed plasmid and then assigned to the control group, berberine group, STAT3 group, and STAT3+berberine group to explore the effect of STAT3 on the regulation of the p53/SLC7A11 pathway. After 24 h incubation with 10 μmol/L berberine, the protein expressions of p-STAT3, STAT3, p53, and SLC7A11 were detected. RESULTS Compared with the control cell, the concentrations of 2.5, 5.0 and 10.0 μmol/L berberine could reduce the cell viability and expression of Ki67, and induce the morphological changes in ferroptosis-related mitochondria, increase the levels of Fe2+, ROS and MDA, and the protein expression of p53, reduce the level of GSH, the binding activity of STAT3 with DNA, and the protein expressions of p-STAT3 and SLC7A11; the above differences were statistically significant (P< 0.05 or P<0.01). Compared with the berberine group,significantly down-regulated p53 protein expression and MDA level, up-regulated SLC7A11 protein expression, and increased mitochondrial membrane potential and GSH level were observed in the p53 siRNA+berberine group (P<0.01). Compared with the berberine group, the protein expressions of p-STAT3, STAT3, and SLC7A11 in the STAT3+berberine group were significantly increased (P<0.01), while the protein expression of p53 was significantly decreased (P<0.01). CONCLUSIONS Berberine can induce the ferroptosis of MG63 cells by mediating STAT3/p53/SLC7A11 signaling pathway.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 269-279, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006580

RESUMO

IgA nephropathy is recognized as the most common primary glomerular disease, with up to 20%-40% of patients developing end-stage kidney disease within 20 years of onset. The deposition of IgA1-containing immune complexes targeting glycosylation defects in the mesangial region and the subsequent inflammation caused by T lymphocyte activation are considered as the main causes of IgA nephropathy, and innate immunity is also involved in the pathogenesis. Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a newly discovered pattern recognition receptor expressed in renal intrinsic cells such as renal tubular epithelial cells, mesangial cells, and podocytes. Activated by external stimuli, NLRP3 can form NLRP3 inflammasomes with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). The NLRP3 inflammasome can activate cysteine aspartate-specific protease-1 (Caspase-1), causing the maturation and release of interleukin-18 (IL-18) and interleukin-1β (IL-1β) involved in inflammation. Increasing evidence has suggested that NLRP3 inflammasomes are involved in the pathogenesis and progression of IgA nephropathy and associated with the damage of renal intrinsic cells such as podocytes, mesangial cells, endothelial cells, and renal tubular epithelial cells. Chinese medicine can regulate inflammatory cytokines and their signaling pathways by acting on NLRP3 inflammasomes and related molecules, exerting therapeutic effects on IgA nephropathy. This article introduces the role of NLRP3 inflammasomes in IgA nephropathy and reviews the clinical and experimental research progress of Chinese medicine intervention in IgA nephropathy via NLRP3 inflammasomes, aiming to provide a reference for further research and application of Chinese medicine intervention in the NLRP3 inflammasome as a new therapeutic target.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 253-261, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006578

RESUMO

Cerebral ischemia/reperfusion injury (CIRI) is a complex cascade reaction process in which the blood flow and oxygen supply of brain tissue in the infarcted area recover after cerebral ischemia, resulting in secondary injury of ischemic brain tissue. At present, thrombolysis as soon as possible and restoration of cerebral blood supply are still the only strategies for the treatment of stroke, but a considerable number of patients' symptoms will be more serious after reperfusion, making patients face adverse outcomes such as neurological function injury and even death and seriously affecting the quality of life and safety of patients. Therefore, an in-depth exploration of the mechanism and treatment strategy of CIRI has important clinical significance. The phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the classic anti-apoptosis/reproductive-promoting signal transduction pathways, which is responsible for cell proliferation, growth, and differentiation. It is the key cascade signaling pathway of CIRI, located at the core site in many mechanisms such as mitochondrial disorder, apoptosis, autophagy, oxidative stress, and inflammation. It is closely related to the occurrence and development of CIRI. Traditional Chinese medicine has been used in the clinical treatment of stroke and its complications for thousands of years, and the clinical effect of traditional Chinese medicine in the prevention and treatment of CIRI has been affirmed by a large number of research results in recent years. It is further clarified that the monomers, active components, and their compound prescriptions of traditional Chinese medicine can directly or indirectly regulate the PI3K/Akt signaling pathway by virtue of the biological advantages of multi-targets, multi-components, and multi-pathways and play an overall protective role in CIRI. By analyzing the related research progress of traditional Chinese medicine in China and abroad in recent years, the authors summarized the role and mechanism of regulating the PI3K/Akt signaling pathway in the prevention and treatment of CIRI, so as to provide further theoretical basis for the study of the mechanism of clinical prevention and treatment of CIRI.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 101-108, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006560

RESUMO

ObjectiveTo investigate the promotional effect of astragaloside on the repair and healing of chronic non-healing wounds and its mechanism. MethodA total of 60 male SD rats were constructed with full-layer skin defect wounds on the back, and except for the control (Con) group, the rest were constructed with non-healing wounds, which were then randomly divided into the sham-operation (sham) group, the low-dose astragaloside group, the high-dose astragaloside group, the astragaloside + LY294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] group, and the astragaloside + EX527 [silencing regulatory protein 1 (SIRT1) inhibitor] group. The percentage of wound area in each group was observed on the 2nd, 4th, 6th, and 8th days after wound molding. Collagen type Ⅰ alpha 1 (COL1A1) and alpha smooth muscle actin (α-SMA) expressions in the wound tissue were detected by immunofluorescence. Hematoxylin and eosin (HE) staining was performed to determine the pathological structure of the wound. The mRNA expression of inflammatory factors in the wound was measured by real-time polymerase chain reaction (Real-time PCR), and the expression of proteins related to the SIRT1/ nuclear factor (NF)-κB and PI3K/protein kinase B (Akt) signaling pathways in the wound was tested by Western blot. ResultCompared with the sham group, the percentage of postoperative wound area of rats in both low-dose and high-dose astragaloside groups gradually decreased with time, and the efficacy of the high-dose astragaloside group was better. Compared with the Con group, the fluorescence intensity of COL1A1 in wound tissue of the sham group decreased, while the expression of α-SMA increased. The epithelial tissue was severely damaged, with an increase in the thickness, and a large number of inflammatory cells were seen in the infiltration. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) was elevated. The protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was elevated, while SIRT1 expression was decreased (P<0.05). Compared with the sham group, the fluorescence intensity of COL1A1 and α-SMA increased after astragaloside treatment. The number of epithelial cells increased, and the thickness decreased. The inflammatory cells decreased, and the amount of collagen increased. The mRNA expression of TNF-α, IL-1β, IL-6, and iNOS was decreased, and the protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was decreased. SIRT1 was elevated, and the effect was better in the high-dose astragaloside group (P<0.05). Compared with the high-dose astragaloside group, inhibition of the PI3K/Akt and SIRT1 pathways by LY294002 and EX527 prevented the therapeutic efficacy of astragaloside on chronic non-healing wounds. ConclusionThe topical application of astragaloside significantly promotes the healing of chronic non-healing wounds in rats, and the mechanism may be related to the activation of the PI3K/Akt pathway and the SIRT1/NF-κB pathway.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 75-82, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006557

RESUMO

ObjectiveTo investigate the effect of Tangbikang granules on oxidative stress of sciatic nerve in diabetic rats by regulating adenylate activated protein kinase/peroxisome proliferator-activated receptor γ coactivator-1α/mitochondrial Sirtuins 3 (AMPK/PGC-1α/SIRT3) signaling pathway. MethodThe spontaneous obesity type 2 diabetes model was established using ZDF rats. After modeling, they were randomly divided into high, medium, and low dose Tangbikang granule groups (2.5, 1.25, 0.625 g·kg-1·d-1) and lipoic acid group (0.026 8 g·kg-1·d-1), and the normal group was set up. The rats were administered continuously for 12 weeks after modeling. The blood glucose of rats was detected before intervention and at 4, 8, 12 weeks after intervention. At the 12th week, motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), nerve blood flow velocity, mechanical pain threshold, and thermal pain threshold were detected. The sciatic nerve was taken for hematoxylin-eosin (HE) staining to observe the tissue morphology. The ultrastructure of the sciatic nerve was observed by transmission electron microscope. The expression levels of superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in sciatic nerve were determined by enzyme-related immunosorbent assay (ELISA). The mRNA expressions of AMPKα, AMPKβ, PGC-1α, and SIRT3 in sciatic nerve were determined by real-time polymerase chain reaction (Real-time PCR). ResultCompared with the normal group, fasting blood glucose in the model group was increased at each time point (P<0.01). The mechanical pain threshold was decreased (P<0.05), and the incubation time of the hot plate was extended (P<0.01). MNCV, SNCV, and nerve blood flow velocity decreased (P<0.05). The expression level of SOD was decreased (P<0.01). The expression levels of MDA, IL-1β, and TNF-α were increased (P<0.01). The mRNA expression levels of AMPKα, AMPKβ, PGC-1α, and SIRT3 were decreased (P<0.01). The structure of sciatic nerve fibers in the model group was loose, and the arrangement was disordered. The demyelination change was obvious. Compared with the model group, the fasting blood glucose of rats in the high dose Tangbikang granule group was decreased after the intervention of eight weeks and 12 weeks (P<0.01). The mechanical pain threshold increased (P<0.05). The incubation time of the hot plate was shortened (P<0.01). MNCV, SNCV, and Flux increased (P<0.05). The expression level of SOD was increased (P<0.01). The expression levels of MDA, IL-1β, and TNF-α were decreased (P<0.01). The mRNA expression levels of AMPKα, AMPKβ, PGC-1α, and SIRT3 were increased (P<0.01). The sciatic nerve fibers in the high-dose Tangbikang granule group were tighter and more neatly arranged, with only a few demyelinating changes. The high, medium, and low dose Tangbikang granule groups showed a significant dose-effect trend. ConclusionTangbikang granules may improve sciatic nerve function in diabetic rats by regulating AMPK/PGC-1α/SIRT3 signaling pathway partly to inhibit oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA