RESUMO
Interactions among dexamethasone, dehydroepiandrosterone (DHEA), lipopolysaccharide (LPS), and antimycin A on the glutamate uptake and the polyamine uptake were investigated in primary cultures of rat cerebral cortical astrocytes to examine the effects of dexamethasone and DHEA on the regulatory role of astrocytes in conditions of increased extracellular concentrations of glutamate or polyamines. 1. (3H)Glutamate uptake: LPS and antimycin A decreased Vmax, but both drugs had little effect on Km. Dexamethasone also decreased basal Vmax without any significant effect on Km. And dexamethasone further decreased the antimycin A-induced decrease of Vmax. DHEA did not affect the kinetics of basal glutamate uptake and the change by LPS or antimycin A. 2. (14C)Putrescine uptake: LPS increased Vmax, and antimycin A decreased Vmax. They showed little effect on Km. Dexamethasone decreased Vmax of basal uptake and further decreased the antimycin A-induced decrease of Vmax, and also decreased Vmax to less than control in LPS-treated astrocytes. DHEA did not affect Km and the change of Vmax by LPS or antimycin A. 3. (14C)Spermine uptake: Antimycin A decreased Vmax, and LPS might increase Vmax. Km was little affected by the drugs. Dexamethasone decreased basal Vmax and might further decrease the antimycin A-induced decrease of Vmax. And dexamethasone also decreased Vmax to less than control in LPS-treated astrocytes. DHEA might increase basal Vmax and Vmax of LPS-treated astrocytes. 4. Vmax of glutamate uptake by astrocytes was increased by putrescine (1000 muM & 2000 muM) and spermidine (200 muM, 500 muM & 2000 muM). Spermine, 200 muM (and 100 muM), also increased Vmax, but a higher dose of 2000 muM decreased Vmax. Km of glutamate uptake was not significantly changed by these polyamines, except that higher doses of spermine showed tendency to decrease Km of glutamate uptake. In astrocytes, dexamethasone inhibited the glutamate uptake and the polyamine uptake in normal or hypoxic conditions, and the polyamine uptake might be stimulated by LPS and DHEA. Polyamines could aid astrocytes to uptake glutamate.
Assuntos
Animais , Ratos , Antimicina A , Astrócitos , Desidroepiandrosterona , Dexametasona , Ácido Glutâmico , Cinética , Poliaminas , Putrescina , Espermidina , EsperminaRESUMO
The effects of DFMO or/and putrescine on the dexamethasone-induced apoptosis of CEM cells were studied to investigate the role of polyamines in anti-leukemic glucocorticoid action. Dexamethasone-induced apoptosis was preceded by significant decreases of cellular polyamine contents and putrescine uptake activity. But DFMO produced decreases of putrescine and spermidine contents and marked increase of putrescine uptake activity, but did not induce apoptosis. However, dexamethasone and DFMO, respectively, induced G|1-arrest in cell cycle and hypophosphorylation of pRb, resulting in the increase of G|1 to S ratio and decrease of CEM cell count. DFMO enhanced the dexamethasone-induced apoptosis and G|1-arrest. On the other hand, putrescine little affected the apoptotic and G|1-arresting activities of dexamethasone, but almost suppress the effects of DFMO and also the DFMO-dependent enhancement of dexamethasone effects. These results suggested that the dexamethasone-induced apoptosis to be associated with pRb hypophosphorylation and G|1-arrest in CEM cells might be ascribed to the concomitant decreases of cellular polyamine contents and putrescine uptake activity.