Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 179-189, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006569

RESUMO

By consulting the ancient and modern literature, the textual research of Pharbitidis Semen has been conducted to clarify the name, origin, distribution of production areas, quality specification, harvesting, processing and so on, so as to provide reference for the development and utilization of the relevant famous classical formulas. Through textual research, it can be seen that Pharbitidis Semen was first published in Mingyi Bielu(《名医别录》), and all dynasties have taken Qianniuzi as the correct name. Based on the original research, the main source of Pharbitidis Semen used in previous dynasties is the dried mature seeds of Pharbitis nil, which is consistent in ancient and modern times. The white Pharbitidis Semen appearing in Compendium of Materia Medica(《本草纲目》) from Ming dynasty is similar to the present P. purpurea. It is produced all over the country, and the quality is better if the particles are full and free of impurities. In ancient times, the harvesting time was mostly in the September. Now it is autumn. The fruits are ripe and harvested, dried to remove impurities for standby. In ancient times, the processing methods of Pharbitidis Semen were mainly wine steaming, steaming and frying until half cooked and grinding the head and end. In modern times, they have been simplified to stir-frying method. The nature, taste, meridian tropism and their effects also change supplements with the deepening of practice. Before the Ming dynasty, they were all bitter, cold and toxic. In the Ming dynasty, there appeared the characteristics of pungent, hot and small poisonous. The efficacy has evolved from controlling low Qi, curing foot edema, removing wind toxin, and facilitating urination to facilitating water and defecation, eliminating phlegm and drinking, and eliminating accumulated insects. The main clinical contraindications are those with weak spleen and kidney, those with weak spleen and stomach, pregnant women, and should not be used with croton and croton cream. Based on the textual research, it is suggested that when developing the classic famous formula with Pharbitidis Semen as the main raw material in the future, it is clear that the source should be the dried mature seeds of Pharbitis nil(black product is its black-brown seeds, white product is its beige seeds). The processing requirements indicated in the original formula are all processed according to the requirements, and the raw product is recommended to be used as medicine if not specified.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 143-151, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006279

RESUMO

ObjectiveTaking Achyranthis Bidentatae Radix(ABR) from different origins as samples, to quantitatively analyze the chemical composition and chromaticity of ABR with different processing degrees, and clarify the correlation and change law between color and composition in the processing process of ABR, so as to provide reference for the quality evaluation of processed products of ABR. MethodThe colorimeter is used to measure the chromaticity values of three kinds of processing degrees of ABR in different origins to show the color value change trend during the processing process, and the color parameters of wine-processed and salt-processed products of ABR with different processing degrees were analyzed by principal component analysis(PCA), orthogonal partial least squares-discriminant analysis(OPLS-DA) and other analysis methods. The contents of eight representative components of ABR were measured by high performance liquid chromatography(HPLC), the correlation between chromaticity and each representative component was analyzed by Pearson correlation analysis, and the applicability of the selected eight representative components was further verified by Fisher linear discriminant analysis, and the wine-processed and salt-processed products of ABR with different processing degrees were grouped according to the degree of processing, and 48 samples of wine-processed and salt-processed products with different processing degrees were used as training samples. Taking the contents of 5-hydroxymethylfurfural, polypodine B, β-ecdysterone, 25R-inokosterone, 25S-inokosterone, ginsenoside Ro, chikusetsusaponin Ⅳa and polysaccharides as variables, the discriminant function was established respectively, and 12 samples of wine-processed and salt-processed products of ABR with different processing degrees were back-tested to verify the discriminant function and test the reliability of the function. ResultPCA and OPLS-DA results showed that ABR samples with different processing degrees were classified into clusters, and the results could significantly distinguish different processed products. During the process of wine and salt processing, the contents of 5-hydroxymethylfurfural, ginsenoside Ro, and chikusetsusaponin Ⅳa gradually increased with the deepening of the processing degree, while the contents of polypodine B, β-ecdysterone, 25R-inokosterone, 25S-inokosterone and polysaccharides showed a gradual decreasing trend, indicating these 8 components increased and decreased to different degrees in the process of wine and salt processing. The results of Pearson correlation analysis showed that the 5-hydroxymethylfurfural content of the samples with different processing degrees of wine-processed and salt-processed products were negatively correlated with the brightness value(L*) and the total color difference value(E*ab)(P<0.01), and positively correlated with the red-green value(a*) and the yellow-blue value(b*)(P<0.01), and that the content of polypodine B and polysaccharides were positively correlated with L* and E*ab(P<0.01). The discriminant functions of wine-processed and salt-processed products of ABR were established by Fisher linear discriminant analysis, and their accuracy rates in the training samples were 93.75% and 95.83%, respectively. Twelve test samples of wine-processed and salt-processed products with different processing degree were back substitution, and the correct rate was 100%. ConclusionThe trend of composition and color changes of ABR with different processing degrees in different production areas is relatively consistent, and the color value can better distinguish ABR with different processing degrees, and the color of ABR is related to some representative components in the processing process, indicating that the color can provide reference for the identification of the processing degree of ABR and the prediction of component content.

3.
Journal of Traditional Chinese Medicine ; (12): 185-191, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005369

RESUMO

ObjectiveTo evaluate the methodological and reporting quality of clinical practice guidelines for Chinese patent medicine (CPM) with internationally recognized tools the appraisal of guidelines for research and evaluation (AGEREE) Ⅱ and reporting items for practice guidelines in healthcare (RIGHT), thereby providing refe-rence for the clinical application and future development of CPM guidelines. MethodsDatabases including CNKI, VIP, Wanfang and Sinomed were searched for CPM guidelines, as well as medlive.cn, websites of China Association of Chinese Medicine and Chinese Medical Association, and reference lists of the included papers. The quality of the guidelines was evaluated using the AGREE Ⅱand RIGHT tools, and consistency tests were performed using Interclass Correlation Coefficient, and descriptive analysis and chi-square test were used to analyze the reporting rate for each domain and the average score for each item. ResultsFinally, 140 CPM guidelines were included, of which 51 were disease-oriented and 89 were drug-oriented, all of which were issued by China. For 51 disease-oriented CPM guidelines, the highest average score of all six AGREE Ⅱ domains was 73.32% for clarity, and the lowest was 26.80% for application; for 89 drug-oriented CPM guidelines, the highest average score was 55.62% for scope and purpose, and the lowest was 31.32% for rigour of development. In terms of the seven domains of the RIGHT checklist, the highest reporting rate was 68.26% for background, and lowest was 27.45% for other areas regarding the disease-oriented CPM guidelines; the highest reporting rate was 61.31% for background, and the lowest was 4.49% for other areas regarding drug-oriented CPM guidelines. The average reporting rate was higher for disease-oriented than drug-oriented CPM guidelines in three domains of AGREE Ⅱ (rigour of development, clarity of presentation, editorial independence), as well as four domains of RIGHT checklist (basic information, evidence, funding and declaration and management of interests, and other areas). ConclusionThe overall methodology and reporting quality of the current CPM guidelines still need to be improved. It is recommended that future guideline development teams should strictly refer to the AGREE Ⅱ and RIGHT checklist, and take into account of the characteristics of CPM guidelines and relevant methodo-logical suggestions in the development and reporting of CPM guidelines, thereby guiding the clinical use of CPM in a better way.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 89-99, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005257

RESUMO

This article systematically analyzes the historical evolution of the origin, scientific name, medicinal parts, quality evaluation, harvesting and processing and other aspects of Tsaoko Fructus by consulting ancient materia medica, medical books, prescription books in the past dynasties and combining with the modern literature, so as to provide a basis for the development and utilization of famous classical formulas containing Tsaoko Fructus. According to the research, the name of Caoguo(草果) was first used in the Taiping Huimin Heji Jufang(《太平惠民和剂局方》) in the Northern Song dynasty, Tsaoko Fructus is the correct name of the herbal medicine in all dynasties, and there are also aliases such as Caokou, Doukou, Loukou, Laokou and Caodoukou. The mainstream source of Tsaoko Fructus used in the past dynasties is the dried mature fruit of Amomum tsaoko of Zingiberaceae, but Tsaoko Fructus was often used as a nickname for Amomi Fructus Rotundus or Alpiniae Katsumadai Semen during the Song dynasty. Bencao Pinhui Jingyao(《本草品汇精要》) in the Ming dynasty was the earliest materia medica that recorded Tsaoko Fructus as a separate medicinal herb in sections. Under the influence of early ancient books, there were some books that confused Tsaoko Fructus with other Zingiberaceae plants during the Qing dynasty, it was not until modern times that Tsaoko Fructus was distinguished from other plants. The origin of Tsaoko Fructus is Yunnan and Guangxi, and then gradually expanded to Guizhou and other places. Now Yunnan is the province with the largest planting area of Tsaoko Fructus, and has become the main producing area. Since modern times, it has been recorded in the literature that the quality of Tsaoko Fructus is mainly characterized by large, full, red-brown and strong in smell. According to ancient records, the harvest time of Tsaoko Fructus was in the eighth month of the lunar calendar, and they were mostly used for peeling or simmering. Currently, the harvest period of Tsaoko Fructus is October to November, and then sun-dried or dried after harvesting. The records of the properties and functional indications of Tsaoko Fructus are basically consistent with the ancient and modern documents, which is warm in nature, pungent in flavor, belonging to the spleen and stomach meridians, moderate in dryness and dampness, intercepting malaria and eliminating phlegm, used for internal resistance of cold and dampness, abdominal distension and pain, fullness and vomiting, malaria cold and fever, and plague fever. Based on the research results, it is suggested that A. tsaoko should be used as the medicinal base for the development of famous classical formulas containing Tsaoko Fructus, processing method can be according to the requirements of the prescription, and if the requirements of concoction are not indicated, it can be used in the form of raw products.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 77-88, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005256

RESUMO

In order to provide basic information for the utilization and development of famous classical formulas containing Bletillae Rhizoma, this article systematically analyzes the historical evolution of the name, origin, harvesting and processing of Bletillae Rhizoma by reviewing the ancient materia medica, prescription books, medical books and modern literature. The research results showed that Baiji(白及) was the main name, some scholars took Baiji(白芨) as its main name, and there were many other names such as Baiji(白给), Baigen(白根), Baiji(白苙). The mainstream source of Bletillae Rhizoma was the tubers of Bletilla striata, and drying, large, white, solid, root-free and skin removed completely were the good quality standards. With the promotion of wild to cultivated medicinal materials, there were certain differences between their traits, and the quality evaluation indexes should be adjusted accordingly. The origin of records in the past dynasties was widely distributed, with Guizhou and Sichuan having high production and good quality in modern times. The harvesting period is mostly in spring and autumn, and harvested in autumn was better. The processing and processing technology is relatively simple, and it was used fresh or powdered in past dynasties, while it is mainly sliced for raw use in modern times. Based on the results, it is suggested that the tubers of Bletilla striata of Orchidaceae should be used in the famous classical formulas, and it should be uniformly written as Baiji(白及). And if the original formula indicates the requirement of processing, it should be operated according to the requirement, if the requirement of processing is not indicated, it can be used in raw form as medicine.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 75-80, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003768

RESUMO

The quality evaluation of the blind method is to evaluate the clinical blind data obtained from clinical trials adopting the blind method and judge the effectiveness of the blind method by investigating the blind effect of different blind objects. A successful blind method can avoid the influence of subjective factors on the test results of subjects and researchers to a certain extent. The quality evaluation of the blind method can reflect not only the effectiveness of the blind method but also the accuracy and credibility of clinical trial results. In recent years, randomized controlled trials have been widely used in the evaluation of the clinical efficacy of traditional Chinese medicine (TCM), but the quality of the implementation of blind methods is uneven, and the evaluation criteria have not yet been formed. In this paper, the data collection methods, calculation principles, advantages, and disadvantages of two quantitative quality evaluation methods of blind methods, namely James Blinding Index (JBI) and Bang Blinding Index (BBI), were introduced. The two indexes were analyzed in a randomized controlled trial of acupuncture and moxibustion to relieve postoperative oral pain. The calculation process of the results was demonstrated by R software and visualized by forest map. At the same time, a tool table was designed to facilitate the collection of evaluation data of blind methods in TCM clinical trials at different stages. Finally, the necessity and feasibility of quality evaluation of blind method in TCM research were discussed to provide a basis for evaluating and improving the quality of blind method implementation in TCM clinical trials.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 43-52, 2024.
Artigo em Chinês | WPRIM | ID: wpr-999159

RESUMO

ObjectiveBased on the experience of traditional quality evaluation, the quality of Atractylodis Macrocephalae Rhizoma(AMR) with different production methods such as direct seeding, transplanting after seedling raising, topping and non-topping, and difference in growth years was compared. MethodVernier caliper was used to measure the trait data of AMR in different production methods. Paraffin sections of AMR with different production methods were made by saffron solid green staining, and the microstructure was observed. The contents of water-soluble and alcohol-soluble extracts in AMR with different production methods were determined according to the 2020 edition of Chinese Pharmacopoeia. The content of water-soluble total polysaccharides in AMR with different production methods was detected by sulfuric acid-anthrone method. Fiber analyzer was used to detect the content of fiber components in AMR with different production methods. The contents of monosaccharides, oligosaccharides and some secondary metabolites in AMR with different production methods were detected by ultra performance liquid chromatography(UPLC), and the differences of chemical components were compared by multivariate statistical analysis methods such as principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA). ResultIn terms of traits, the 3-year-old AMR with direct seeding and without topping was close to the high-quality AMR with "phoenix-head and crane-neck, strong sweetness and clear aroma" recorded in ancient materia medica, followed by the 3-year-old AMR with topping after transplanting, while the 2-year-old AMR with topping after transplanting with high market circulation rate was generally fat and strong with mild odor. In the microscopic aspect, the arrangement of xylem vessels and fiber bundles in the 3-year-old samples formed two obvious rings. Compared with the 2-year-old samples cultivated in Bozhou and Zhejiang, the 3-year-old samples without topping after transplanting had more wood fibers. In terms of chemical composition, the contents of 70% ethanol extract, fructose, glucose, sucrose, 1-kestose, atractylenolide Ⅰ, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid and other components in 3-year-old AMR with direct seeding and without topping were significantly higher than those in the other three samples(P<0.05). The contents of cellulose, 70% ethanol extract, sucrose, atractylenolide Ⅰ, atractylone and other components in 3-year-old AMR with topping after transplanting were significantly higher than those in the 2-year-old AMR with high market circulation rate(P<0.05), while the contents of water-soluble extract and water-soluble total polysaccharides in 2-year-old samples with topping after transplanting were significantly higher than those in the 3-year-old AMR with topping after transplanting, direct seeding and without topping(P<0.05). ConclusionUnder the current mainstream production mode, too much manual intervention makes AMR heavily enriched in polysaccharides and increased the yield, but the accumulation of sweet substances, fragrant substances and fiber substances is insufficient, which affects its quality. The current quality standard of AMR has some shortcomings in guiding the high quality production of it, it is suggested to revise the quality standard of AMR, supplement the quantitative analysis of secondary metabolites, and strengthen the production of imitation wild AMR.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 31-42, 2024.
Artigo em Chinês | WPRIM | ID: wpr-999158

RESUMO

ObjectiveBased on the quality evaluation experience of "it is better to have a fragrant and strong aroma" summarized by materia medica of past dynasties, the chemical components of Sojae Semen Nigrum(SSN) and Sojae Semen Praeparatum(SSP) were systematically compared and analyzed, and the main fermentation products in different fermentation time were quantitatively analyzed, so as to clarify the transformation law of internal components in the processing process and provide scientific basis for the modern quality control of SSP. MethodUltra performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used for the structural identification of the chemical constituents of SSN and SSP, and with the aid of Progenesis QI v2.3 software, the negative ion mode was employed for principal component analysis(PCA) pattern recognition, and the data were analyzed with the aid of orthogonal partial least squares-discriminant analysis(OPLS-DA) for two-dimensional data to obtain S-plot, and components with |P|>0.1 were selected as the differential constituents. The contents of isoflavonoids in SSP during fermentation was determined by UPLC, and the samples were taken every 8 h in the pre-fermentation period and every 2 d in the post-fermentation period, and the dynamic changes of isoflavonoid contents in different fermentation stages were analyzed. The contents of amino acids and nucleosides in SSP and SSN from different fermentation stages were quantitatively analyzed by phenyl isothiocyanate(PITC) pre-column derivatization and high performance liquid chromatography(HPLC) gradient elution, and the contribution of flavor substances to the "delicious" taste of SSP was discussed by taste intensity value(TAV). ResultA total of 19 kinds of differential components were screened out, mainly soybean saponins and isoflavones, and their contents decreased significantly or even disappeared after fermentation. In the pre-fermentation process of SSP, glycoside bond hydrolysis mainly occurred, and isoflavone glycosides in SSN were degraded and converted into the corresponding aglycones, the content of flavor substances such as amino acids increased gradually. In the post-fermentation process, protein degradation mainly occurred, after 8 d of post-fermentation, the content of isoflavones was basically stable, while the total content of amino acids increased by 8-40 times on average. Different amino acids form the special flavor of SSP, such as the TAV of glutamate is always ahead of other flavor substances, and sweet substances such as alanine and valine have made relatively great contributions to SSP. ConclusionBased on the law of constituent transformation, combined with the traditional evaluation index of "fragrant and strong", it is difficult to control the fermentation degree of SSP by the existing standards in the 2020 edition of Chinese Pharmacopoeia. It is suggested that description of the characteristics of SSP be refined and changed to "fragrant, delicious and slightly sweet", and at the same time, the post-fermentation index compounds such as glutamic acid, alanine and valine should be added as the quality control indicators of SSP, so as to standardize the production process and improve the quality of SSP.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-30, 2024.
Artigo em Chinês | WPRIM | ID: wpr-999157

RESUMO

ObjectiveBased on the traditional quality evaluation methods summarized in previous dynasties, this paper systematically contrasted cultivated Astragali Radix(CA) and wild-simulated Astragali Radix(WA) from the aspects of character, microstructure and chemical composition by modern technological means. MethodThe collected CA and WA were compared in characters and microscopic characteristics in cross section, and comparative analysis were performed on the contents of cellulose, extracts, carbohydrate, total flavonoids, total saponins, etc. Then ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometer(UPLC-Q-TOF-MS) and desorption electrospray ionization mass spectrometry imaging(DESI-MSI) were used to comparatively analyze the secondary metabolites and their spatial distributions in the xylem and phloem of CA and WA. ResultIn terms of characters, the characters and sectional features of WA was consistent with the characteristics of high-quality Astragali Radix, while the CA was quite different from the traditional high-quality Astragali Radix. In terms of microscopy, the phellem layer of CA was thin, and the section fissures were mostly distributed through the cambium in a long strip shape without obvious growth ring characteristics. The cork layer of WA was thick, and the cracks in the section were distributed in the center of the xylem and the outer edge of the phloem in an irregular cavity shape. The cambium was tight without cracks, and had obvious characteristics of a growth ring. In terms of chemical composition, the contents of water-soluble extract, 80% ethanol extract and sucrose of CA was significantly higher than those of WA, while the contents of total saponins, lignin and hemicellulose were significantly lower than those of WA. And the contents of 100% ethanol extract, total polysaccharides and total flavonoids in both of them were generally similar, but slightly higher in WA. The contents of 2 kinds of monoacyl-substituted flavonoid glycosides in the xylem of WA was significantly higher than those of CA, while the contents of 2 kinds of flavonoid aglycones and one flavonoid glycoside were on the contrary. The contents of 7 saponins in phloem of WA were significantly higher than those of CA. ConclusionThere are significant differences between CA and WA in characters, microstructure and chemical components, in which CA has a fast growth rate and a short planting period, and the primary metabolites such as water-soluble extracts and sucrose are more enriched, which is the reason for its firm texture and sweetness being significantly higher than those of WA. However, the contents of lignin, hemicellulose and some secondary metabolites in WA are significantly higher than those in the CA, which are close to the traditional description of characters and quality. Based on the results of this study, it is suggested to strengthen the production of WA, improve the supply capacity of WA, and gradually upgrade the current standard. It is recommended to increase the contents of monoacyl-substituted flavonoid glycosides, total saponins and other indicators that can characterize different production methods, so as to guide the high-quality production of Astragali Radix.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 31-39, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1011440

RESUMO

By consulting the ancient Chinese herbal books, medical books and formularies of the past dynasties, and combining with modern research data, this paper makes a systematic textual research on the name, origin, place of origin, traditional quality evaluation, harvesting and processing of Selaginellae Herba, so as to provide a basis for the development and utilization of the relevant famous classical formulas. According to the textual research, Juanbai is the correct name of the herbal medicine in all dynasties, and there are also aliases such as Baozu, Qiugu, Jiaoshi and Jiusi Huanhuncao. The origin of Selaginellae Herba in the ancient herbal books was Selaginella tamariscina in all dynasties. Since the Republic of China, S. pulvinata has been gradually used as another origin of Selaginellae Herba. In ancient times, the producing area of S. tamariscina was mainly in Shandong, Hebei, Henan, Shaanxi, Jiangsu and Sichuan, etc. Nowadays, it is produced all over the country. S. pulvinata is mainly produced in Guangxi, Fujian, Sichuan, Guizhou, Yunnan, Hebei and so on. Since the recent times, it is concluded that the quality of the green color, complete and unbroken is good. Before the Qing dynasty, it was recorded that the harvesting time of Selaginellae Herba was generally from April to July, and it was expanded to all year round since the Qing dynasty. After harvesting, remove the sediment(sand and mud), cut off the fibrous roots and dry in the shade or in the sun. The processing methods in all dynasties were mainly carbonizing by stir-frying and stir-bake to brown, and some ancient books contained the processing method of brine boiling, which was rarely used in modern times. Based on the results, it is recommended that S. tamariscina should be used as the base material of Selaginellae Herba. Because of more impurities, it should be fully purified to ensure the cleanliness of the herb, and the processing method can be based on the prescription requirements, if the processing requirements are not specified, the raw products can be used, charcoal products is recommended for use as an hemostatic.

11.
China Pharmacy ; (12): 449-452, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1011326

RESUMO

OBJECTIVE To prepare the Eriodictyol chewable tablet and to evaluate its quality. METHODS The chewable tablet was prepared by the wetting granulation method by using microcrystalline cellulose (MCC) and mannitol as fillers, polyvinylpyrrolidone (PVP) as adhesive, citric acid and sucralose as flavor correction agents, magnesium stearate as lubricant. The comprehensive evaluation was conducted on Eriodictyol chewable tablets with the dosage of each excipient as a factor using the appearance, taste, flavor and texture as indicators. The ratio of excipients was optimized by orthogonal test, and the quality of Eriodictyol chewable tablets prepared by optimized formulation was evaluated in terms of appearance, weight difference, hardness, fragility, eriodictyol content, dissolution and content uniformity. RESULTS The optimal formulation was as follows: 26.4% eriodictyol (50 mg each piece), 45% mannitol, 25% MCC, 0.3% citric acid, 0.3% sucralose, 1% magnesium stearate, 2% PVP (preparing 5% solution using purified water). The scores of 3 batches of Eriodictyol chewable tablets in the validation test were 8.76, 8.75 and 8.80 (RSD=0.30%, n=3), respectively. The Eriodictyol chewable tablet had a complete appearance and a smooth surface; the average tablet weight was 192.57 mg, the average hardness was 57.36 N, the fragility was 0.09%, the average content of eriodictyol per tablet was 50.74 mg, the cumulative dissolution within 30 min was exceeding 80%, and the content uniformity was 5.51. CONCLUSIONS Eriodictyol chewable tablet prepared by optimal formulation conforms to the requirements of the 2020 edition of Chinese Pharmacopoeia.

12.
Journal of Zhejiang University. Medical sciences ; (6): 636-645, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1009924

RESUMO

OBJECTIVES@#To evaluate the methodological quality of randomized controlled trials (RCTs) of traditional Chinese medicines for the treatment of gastric precancerous lesions in the past 20 years.@*METHODS@#The RCTs on traditional Chinese medicines for gastric precancerous lesions were searched from the CNKI, Wanfang database, VIP, PubMed, and Embase from January 2001 to December 2021. The retrieved articles were screened, extracted and evaluated based on the 2010 edition of CONSORT statement, Cochrane Risk of Bias Assessment Scale and additional evaluation indicators.@*RESULTS@#A total of 840 papers were included. According to the Cochrane Risk of Bias Assessment Scale, the high risk of bias in the application of randomized methods was 5.95%; the risk of uncertainty for the allocation scheme concealment was 98.93%; the risk of uncertainty for blinding of patients or testers was 98.69%; the risk of uncertainty for blinding of the outcome assessor was 100.00%; the risk of bias for completeness of the outcome data was 2.86%; and the risk of uncertainty for selective reporting was 98.45%. The CONSORT statement evaluating the quality of reporting showed that 100.00% of the RCT articles reported the 8 entries; 36.79% of the literature mentioned the method of randomized sequence generation, but only 27.62% of the literature mentioned who implemented the randomized program, 1.07% of the literature hid the randomized program and 1.31% of the studies were blinded; 36.67% of the literature reported adverse reactions; no literature reported sample size prediction methods. Additional evaluation indicators showed that 17.02% of the studies had ethical approval; 43.81% of the literature specified Chinese medicine evidence; 16.55% of the studies excluded severe heterotrophic hyperplasia; 7.26% of the studies conducted follow-up; and 65.12% of the literature used composite efficacy indicators; 46.67% of the literature applied pathological histological evaluation; 2.62% of the literature applied quality of life evaluation.@*CONCLUSIONS@#The overall risk of bias in RCTs of traditional Chinese medicines for gastric precancerous lesions is high, and the quality of most of the study reports needs to be improved. In the future, it is necessary to strengthen the study design of RCTs and refer to appropriate traditional Chinese medicines evidence grading standards, select study protocols according to different purposes, provide objective and strong evidence for clinical studies on traditional Chinese medicines, and carry out clinical study design and result reporting suitable for traditional Chinese medicines according to the CONSORT principle.


Assuntos
Humanos , Medicina Tradicional Chinesa , Ensaios Clínicos Controlados Aleatórios como Assunto , Lesões Pré-Cancerosas/tratamento farmacológico
13.
Chinese Journal of Blood Transfusion ; (12): 1040-1045, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1004698

RESUMO

【Objective】 To identify the main unqualified items in the external audit of blood station quality management system (referred to as external audit), in order to take necessary measures to continuously improve the quality system. 【Methods】 Unqualified items(data) in the national and Shandong provincial blood safety technical audits (referred to as national and provincial audits) and four blood station blood safety technical joint audits (referred to as inter station mutual audits) from 2017 to 2019 were collected and analyzed by Excel and Pareto curves (graphs). Corresponding corrective and preventive measures were developed and implemented, and then tracked and evaluated by the quality management department three months after the external audit to verify their effectiveness. 【Results】 In a total of 7 external audits of blood station quality management system that our blood station has participated in over the past 3 years (including 2 national audits, 2 provincial audits, and 3 inter station mutual audits), the main unqualified terms were "12 monitoring and continuous improvement" 11.90% (15/126), "13 blood donation services" 11.90% (15/126), "06 equipment" 10.32% (13/126), "11 records" 10.32% (13/126), "03 organization and personnel" 8.73% (11/126), "15 blood preparation" 7.94% (10/126), "08 safety and health" 7.14% (9/126), and "14 blood testing" 7.14% (9/126). Among them, "monitoring and continuous improvement" ranked first in two national audits and two provincial audits, with 16.67% (5/30) and 14.71% (5/34), respectively, and was 8.06% (5/62) in inter station mutual audit, and the difference between the three kinds of audits was not statistically significant (P>0.05). "Records" accounted the highest proportion in inter station mutual review of 19.35% (12/62), while was respectively 0 and 2.94% (1/34) in national and provincial audits, with statistically significant difference between the three kinds of audits (P<0.05). 【Conclusion】 External audit against unqualified items is important for quality improvement. By analyzing the unqualified terms, taking corresponding measures to improve weak links, and evaluating the effectiveness of those measures, it can effectively ensure the effective operation of blood station quality management system.

14.
Journal of China Pharmaceutical University ; (6): 749-756, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1003595

RESUMO

@#The UPLC fingerprint of colistimethate sodium was established for the study of quality consistency.The chromatographic column was Acquity UPLC? Peptide CSH C18 (2.1 mm × 150 mm, 1.7 μm).The mobile phase A was phosphate buffer-acetonitrile (19∶1), and the mobile phase B was phosphate buffer-acetonitrile (1∶1).The mobile phase was in gradient elution at a flow rate of 0.3 mL/min.The column temperature was set at 30 °C and the detection wavelength was 210 nm.The similarity of the fingerprints was analyzed with the Similarity Evaluation System for Chromatographic Fingerprint of Tradition Chinese Medicine (Version 2012) in combination with content determination of multiple index components to evaluate the quality consistency of imported and domestic bulk drugs.The result showed that both the original and generic bulk drugs met the specified limit requirements in the European Pharmacopoeia standards, and that their UPLC fingerprints were highly similar, indicating that the quality of the two substances was consistent.Establishing a fingerprint for similarity evaluation and combining it with the results of indicator component content determination as a comprehensive evaluation method for the study of drug quality consistency of complex components has the characteristics of fast, accurate, and comprehensive, which is helpful for drug quality evaluation and provides ideas for the evaluation of antibiotic quality consistency of complex components.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 34-43, 2023.
Artigo em Chinês | WPRIM | ID: wpr-961681

RESUMO

By reviewing the materia medica, medical books and scripture history, combining modern and contemporary literature and field investigation, this paper systematically reviewed the name, origin, scientific name, producing area, quality, harvesting and processing of Scorpio in famous classical formulas to clarify the relationship between ancient and modern times and provide a reference basis for the development of related famous classical formulas. After the textual research, it can be seen that there are many names of Scorpio, and most of the materia medica use Xie or Quanxie as the official name. The origin of Scorpio used in the past dynasties is Buthus martensii, which is the same in ancient and modern times. B. martensii is mainly distributed in the central and eastern parts of China, as well as Mongolia, Korea and other places, located in East Asia. Therefore, pharmaceutical workers in China mostly continue to use the early Chinese name, that is, Dongya Qianxie, while modern Scorpiones taxonomists set its Chinese name as Mashi Zhengqianxie. In order to maintain the stability and continuity of the origin of Scorpio, the previous editions of Chinese Pharmacopoeia have always used the name of B. martensii. The geo-authentic producing area of Scorpio, which has been respected in the past dynasties, was Qingzhou, Shandong. Until the Republic of China, due to the different processing methods in the production area, the geo-authentic producing area expanded to Yu county, Henan, with Yu county as the distribution center, the best quality of Scorpio is produced by boiling in clear water and drying after boiling. The origin processing of Scorpio is mainly divided into clean water and salt water boiling and then drying, where the method of boiling with salt water was first described in Bencao Yuanshi, the purpose is antiseptic and suitable for storage, and the salt should be washed away when used clinically. There are few processing methods of Scorpio, in ancient times, it was used for roasting or frying after removing the feet, in modern times, it is mostly to remove impurities, wash and dry. Scorpio is not only used for medicinal purposes, but also has the habit of eating in many areas, so the consumption of resources is relatively large, and it is still mainly harvested from the wild, resulting in the decrease of wild resources year by year. Based on the research conclusion, it is recommended that B. martensii, which is produced in Qingzhou, Luyi or Yuzhou, should be used in the the development of famous classical formulas containing Scorpio, and the origin processing is preferable to be dried after boiling with water, and the processing specification should be selected as raw products. And B. martensii in geo-authentic producing areas was used as the seed source to establish a standardized breeding base to ensure the sustainable development of the resources of Scorpio.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 25-33, 2023.
Artigo em Chinês | WPRIM | ID: wpr-961680

RESUMO

By reviewing the ancient materia medica, medical books and modern literature, this paper made a systematic textual research on Haliotidis Concha in famous classical formulas, including the name, origin, producing area, quality evaluation, harvesting and processing, in order to provide a basis for the development of famous classical formulas containing Haliotidis Concha. The textual research showed that Shijueming was the official name of Haliotidis Concha in past dynasties, and there were also aliases such as Qianliguang, Jiukongluo and Zhenzhumu named after its efficacy, properties and near-phonetic characters. Before the Tang dynasty, the original description of Haliotidis Concha was too concise, which could only be identified as the animal of genus Haliotis, family Haliotidae. During the Song, Yuan, Ming and Qing dynasties, the main varieties were H. diversicolor and H. discus hannai. At the beginning of the Republic of China, a variety of animals from genus Haliotis were used as Haliotidis Concha, and varieties were numerous and continued to this day. In ancient and modern times, the main producing areas in China are Hainan, Guangdong and Shandong, while the foreign producing areas are mainly Japan and Vietnam. The quality evaluation of Haliotidis Concha in ancient books was roughly determined by the number of openings of the expiratory orifice, and seven-hole and nine-hole abalone shells were preferred. In modern times, characters as big, neat, unbroken, clean inside and outside, lustrous, thick shells are preferred. Based on the textual research results and combined with the record years of the Shijueming San, it is suggested that the shells of H. diversicolor or H. discus hannai should be used in the development of this formula, and the raw products should be used as medicine.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 14-24, 2023.
Artigo em Chinês | WPRIM | ID: wpr-961679

RESUMO

Benzoinum has a long history of medicinal use. In order to standardize its clinical use, the author made systematic textual research on the name, origin, evolution of scientific name, producing area, property, quality evaluation, harvesting and processing of Benzoinum by reviewing the ancient materia medica, medical books and modern literature. According to the research, the mainstream variety of Benzoinum recorded in ancient materia medica should be the dry resin of Styrax tonkinensis of Styracaceae. In addition to S. benzoin, which was also used in many applications. In modern times, S. benzoin was the mainstream, but in practice, it was mostly the resin of various plants of the genus Styrax, and then S. tonkinensis and S. benzoides were recorded as the main sources of Benzoinum. Nowadays, it mainly comes from S. tonkinensis. In ancient times, the producing areas of Benzoinum were Persia, Xirong, Annan and other places, whereas now are distributed in Indonesia, Sumatra, Thailand, Vietnam, and Fujian, Guizhou, Yunnan, Guangxi, Guangdong and other places in China, but most of the medicinal materials in China are imported. Traditionally, the medicinal materials of Benzoinum with properties of oily, waxy luster, brittle and fragile, strong aroma, sand feeling when chewing and no impurities are considered better. In antiquity, the harvesting time of Benzoinum was concentrated in July and August, while in modern times, it is harvested in summer and autumn, and collected in various ways, usually the trees are selected to be harvested if they are more than 10 years old, and the best quality being the first, milky resin collected when the time of cutting the trees is from April to June. In the past dynasties, the powdered resin was mainly ground and used in formulas, in addition, there were also records of wine steaming into paste and processing with honey, etc. The 1953 edition of Chinese Pharmacopoeia added records such as sevum benzoinatum and adeps benzoinatus, and now it is mostly used as powder into pills or powers, or used after processing with wine. Based on the results of textual research, it is suggested that although the dry resin of S. benzoin is not a medicinal variety of Benzoinum included in the 2020 edition of Chinese Pharmacopoeia, it has a long history of application and has some clinical value, so its medicinal feasibility can be explored in depth. In the development of famous classical formulas containing Benzoinum, the dry resin of S. tonkinensis or S. benzoin can be used, which should be used in medicine as powder after dried or processed according to the requirements of prescriptions.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-13, 2023.
Artigo em Chinês | WPRIM | ID: wpr-961678

RESUMO

By reviewing ancient materia medica, medical books and modern literature, the name, origin, quality evaluation, producing area and processing methods of Huoxiang herbs were systematically investigated and researched, so as to provide reference and basis for the development and utilization of famous classical formulas containing Huoxiang herbs. Through the herbal textual research, it can be seen that most of materia medica in past dynasties have taken Huoxiang as the nominal rectification, and the mainstream base used is Pogostemon cablin. In order to distinguish another plant of the same family, Agastache rugosa, which has been widely used in Chinese folk since the Ming dynasty, and respect geo-authentic region, Pogostemonis Herba is also named Guanghuoxiang. Pogostemonis Herba is native to Vietnam and other Southeast Asian countries, and was introduced to China as a spice through Guangdong and other places in the early days, and has been successfully cultivated in the south of China since the Song dynasty. The medicinal parts are mostly dried aboveground parts, and the leaves and stems are also separated for medicine sometimes. The geo-authentic region of Pogostemonis Herba is Guangdong in the past dynasties, and it is currently cultivated in Guangzhou, Zhaoqing, Zhanjiang of Guangdong province and Hainan province, with the most famous one cultivated in Shipai. Pogostemonis Herba is mainly planted by cutting propagation. It usually sprouts in February and is harvested in June. The main processed method in region is stuffy dry, which is placed in the sun and repeatedly suffocated until it has an aromatic smell and the color turns yellow. The processing method is mostly to use the raw product as medicine after being selected. Based on the research results, it is suggested that the leaves of P. cablin are used in Yangweitang, for Huopo Xialingtang, it is recommended to choose the raw product of A. rugosa that is removed the roots and old stems.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 94-103, 2023.
Artigo em Chinês | WPRIM | ID: wpr-960911

RESUMO

By reviewing ancient materia medica, medical books and modern literature, this paper conducted a systematic research on name, origin, scientific name evolution, producing area, quality, harvesting and processing methods of Alpiniae Officinarum Rhizoma. The results showed that Alpiniae Officinarum Rhizoma was first published in Mingyi Bielu, and its correct name was Gaoliangjiang. The mainstream origin of Alpiniae Officinarum Rhizoma used in the past dynasties is Alpinia officinarum, which is used to this day, while it used to be mixed with A. galanga because of the similar name and morphology. Alpiniae Officinarum Rhizoma produced in Danzhou and Leizhou was considered to be better in ancient times, and now it mainly produced in Guangdong, Guangxi and Hainan provinces. In addition, it has been concluded that Alpiniae Officinarum Rhizoma with reddish brown, sturdy and firm character, wrinkled skin, convex flesh, aromatic and spicy taste, and few branches is the best. In ancient times, Alpiniae Officinarum Rhizoma was commonly harvested in February and March, whereas it generally harvested in late summer or early autumn at present, and wild products are usually harvested before the rainy season in May. The main processing methods of Alpiniae Officinarum Rhizoma are cleansing and cutting, and some other methods are stir-frying or mixing with auxiliary materials. Based on the research results, it is suggested that the raw products of A. officinarum rhizomes or its processed products according to prescription requirements should be used in the development of famous classical formulas containing Alpiniae Officinarum Rhizoma.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 58-67, 2023.
Artigo em Chinês | WPRIM | ID: wpr-960908

RESUMO

By reviewing ancient materia medica, medical books, prescription books and modern literature, the herbal textual research of Sanguisorbae Radix has been conducted to verify the name, origin, evolution of scientific name, producing area, harvesting time, quality evaluation and processing methods. Through herbal textual research, the name of Diyu was first published in the Shennong Bencaojing, and has been used as the proper name of this herb for generations since then. The origin of the mainstream Diyu of previous generations was the roots of Sanguisorba officinalis or its variant S. officinalis var. longifolia. In ancient times, this herb was preferred to those with soft and fat roots, according to this characteristic, its origin should be S. officinalis var. longifolia. In modern literature, the root is preferred to those with thick, hard, pink or red sections, without rhizomes or fibrous roots, according to these characteristics, its origin should be S. officinalis. Most of the time, the past generation used Diyu directly. Occasionally, Sanguisorbae Radix was processed by frying with vinegar, baking or other methods. Since the Qing dynasty, the carbonized products has appeared and has continued to now. Based on research, it is recommended that the roots of S. officinalis var. longifolia should be used in the development of famous classical formulas, and the processing method should be selected according to the formula.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA