RESUMO
The present study was designed to analyze the metabolites of all-frans-retinal (atRal) and compare the cytotoxicity of atRal versus its derivative all-frans-retinoic acid (atRA) in human retinal pigment epithelial (RPE) cells. We confirmed that atRA was produced in normal pig neural retina and RPE. The amount of all-trans-retinol (atROL) converted from atRal was about 2.7 times that of atRal-derived atRA after incubating RPE cells with 10 µmol/L atRal for 24 h, whereas atRA in medium supernatant is more plentiful (91 vs. 29 pmol/mL), suggesting that atRA conversion facilitates elimination of excess atRal in the retina. Moreover, we found that mRNA expression of retinoic acid-specific hydroxylase CYP26b1 was dose-dependently up-regulated by atRal exposure in RPE cells, indicating that atRA inactivation may be also initiated in atRal-accumulated RPE cells. Our data show that atRA-caused viability inhibition was evidently reduced compared with the equal concentration of its precursor atRal. Excess accumulation of atRal provoked intracellular reactive oxygen species (ROS) overproduction, heme oxygenase-1 (HO-1) expression, and increased cleaved poly(ADP-ribose) polymerase 1 (PARP1) expression in RPE cells. In contrast, comparable dosage of atRA-induced oxidative stress was much weaker, and it could not activate apoptosis in RPE cells. These results suggest that atRA generation is an antidotal metabolism pathway for atRal in the retina. Moreover, we found that in the eyes of ABCA4−/−RDH8−/− mice, a mouse model with atRal accumulation in the retina, the atRA content was almost the same as that in the wild type. It is possible that atRal accumulation simultaneously and equally promotes atRA synthesis and clearance in eyes of ABCA4−/−RDH8−/− mice, thus inhibiting the further increase of atRA in the retina. Our present study provides further insights into atRal clearance in the retina.
RESUMO
Objective: To evaluate the safety and effectiveness of eyelid margin cleaning using Deep Cleaning Device for the treatment of meibomian gland dysfunction-associated dry eye. Methods: This was a prospective, randomized, open-label, investigator-masked, and self-controlled study. We randomly assigned one eye of patients with meibomian gland dysfunction-associated dry eye to the treatment group, and the other eye to the control group. Both groups received artificial tears and lid warming; the treatment group received an additional one-time in-office eyelid margin cleaning using Deep Cleaning Device. Non-invasive tear break-up time (NITBUT) and tear meniscus height (TMH) of each eye, and Standard Patient Evaluation for Eye Dryness II (SPEED II) score of each patient were evaluated before and at one week after treatment. Results: Thirty eyes of 15 patients were enrolled. No adverse effects occurred during the treatment. Compared with the baseline values, the SPEED score decreased significantly at one week after treatment (mean±95% confidence interval, 11.00±0.99 vs. 5.67±1.67, P<0.0001), the NITBUT-first in the treatment group increased significantly at one week after treatment ((4.74±1.27) s vs. (7.49±2.22) s, P=0.01). The NITBUT-first was significantly longer in the treatment group ((7.49±2.22) s) than in the control group ((5.17±0.91) s) at one week after treatment (P=0.042). No significant differences were found in other tear film parameters between the two groups. Conclusions: Eyelid margin cleaning using the novel Deep Cleaning Device is a convenient, effective, and safe treatment for patients with meibomian gland dysfunction-associated dry eye.