Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Neuroscience Bulletin ; (6): 929-946, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982431

RESUMO

A decline in the activities of oxidative phosphorylation (OXPHOS) complexes has been consistently reported in amyotrophic lateral sclerosis (ALS) patients and animal models of ALS, although the underlying molecular mechanisms are still elusive. Here, we report that receptor expression enhancing protein 1 (REEP1) acts as an important regulator of complex IV assembly, which is pivotal to preserving motor neurons in SOD1G93A mice. We found the expression of REEP1 was greatly reduced in transgenic SOD1G93A mice with ALS. Moreover, forced expression of REEP1 in the spinal cord extended the lifespan, decelerated symptom progression, and improved the motor performance of SOD1G93A mice. The neuromuscular synaptic loss, gliosis, and even motor neuron loss in SOD1G93A mice were alleviated by increased REEP1 through augmentation of mitochondrial function. Mechanistically, REEP1 associates with NDUFA4, and plays an important role in preserving the integrity of mitochondrial complex IV. Our findings offer insights into the pathogenic mechanism of REEP1 deficiency in neurodegenerative diseases and suggest a new therapeutic target for ALS.


Assuntos
Camundongos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Camundongos Transgênicos , Medula Espinal/patologia , Mitocôndrias/fisiologia , Modelos Animais de Doenças
2.
Journal of Clinical Neurology ; : 257-261, 2014.
Artigo em Inglês | WPRIM | ID: wpr-123050

RESUMO

BACKGROUND AND PURPOSE: Hereditary spastic paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative disorders that are characterized by progressive spasticity and weakness of the lower limbs. Mutations in the spastin gene (SPAST) are the most common causes of HSP, accounting for 40-67% of autosomal dominant HSP (AD-HSP) and 12-18% of sporadic cases. Mutations in the atlastin-1 gene (ATL1) and receptor expression-enhancing protein 1 gene (REEP1) are the second and third most common causes of AD-HSP, respectively. METHODS: Direct sequence analysis was used to screen mutations in SPAST, ATL1, and REEP1 in 27 unrelated Korean patients with pure and complicated HSP. Multiplex ligation-dependent probe amplification was also performed to detect copy-number variations of the three genes. RESULTS: Ten different SPAST mutations were identified in 11 probands, of which the following 6 were novel: c.760A>T, c.131C>A, c.1351_1353delAGA, c.376_377dupTA, c.1114A>G, and c.1372A>C. Most patients with SPAST mutations had AD-HSP (10/11, 91%), and the frequency of SPAST mutations accounted for 66.7% (10/15) of the AD-HSP patients. No significant correlation was found between the presence of the SPAST mutation and any of the various clinical parameters of pure HSP. No ATL1 and REEP1 mutations were detected. CONCLUSIONS: We conclude that SPAST mutations are responsible for most Korean cases of genetically confirmed AD-HSP. Our observation of the absence of ATL1 and REEP1 mutations needs to be confirmed in larger series.


Assuntos
Humanos , Coreia (Geográfico) , Extremidade Inferior , Reação em Cadeia da Polimerase Multiplex , Espasticidade Muscular , Doenças Neurodegenerativas , Análise de Sequência , Paraplegia Espástica Hereditária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA