Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Acta Pharmaceutica Sinica B ; (6): 319-334, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011247

RESUMO

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases. A number of allosteric RIPK1 inhibitors (RIPK1i) have been developed, and some of them have already advanced into clinical evaluation. Recently, selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge. Here, we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i. We also describe the structure-guided lead optimization of a potent, selective, and orally bioavailable RIPK1i, 62, which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases. Collectively, 62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.

2.
Chinese Journal of Biotechnology ; (12): 3481-3493, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1007971

RESUMO

Diacylglycerol (DAG) is an intermediate product in lipid metabolism and plays an important physiological role in human body. It is mainly prepared by hydrolyzing lipid with lipase. However, research on the detection method of 1, 2-diacylglycerol (1, 2-DAG) and 1, 3-diacylglycerol (1, 3-DAG) and catalytic specificity of lipase was not enough, which limits its wide application. To address these challenges, an efficient quantitative detection method was first established for 1, 2-DAG (0.025-0.200 g/L) and 1, 3-DAG (0.025-0.150 g/L) by combining supercritical fluid chromatography with evaporative light scattering detector and optimizing the detection and analysis parameters. Based on the molecular docking between Thermomyces lanuginosus lipase (TLL) and triolein, five potential substrate binding sites were selected for site-specific saturation mutation to construct a mutation library for enzyme activity and position specificity screening. The specificity of sn-1, 3 of the I202V mutant was the highest in the library, which was 11.7% higher than the specificity of the wild type TLL. In summary, the position specificity of TLL was modified based on a semi-rational design, and an efficient separation and detection method of DAG isomers was also established, which provided a reference for the study of the catalytic specificity of lipase.


Assuntos
Humanos , Diglicerídeos , Simulação de Acoplamento Molecular , Sítios de Ligação , Catálise , Lipase/genética
3.
Chinese Journal of Biotechnology ; (12): 1107-1118, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970426

RESUMO

L-arabinose isomerase (L-AI) is the key enzyme that isomerizes D-galactose to D-tagatose. In this study, to improve the activity of L-arabinose isomerase on D-galactose and its conversion rate in biotransformation, an L-arabinose isomerase from Lactobacillus fermentum CGMCC2921 was recombinantly expressed and applied in biotransformation. Moreover, its substrate binding pocket was rationally designed to improve the affinity and catalytic activity on D-galactose. We show that the conversion of D-galactose by variant F279I was increased 1.4 times that of the wild-type enzyme. The Km and kcat values of the double mutant M185A/F279I obtained by superimposed mutation were 530.8 mmol/L and 19.9 s-1, respectively, and the catalytic efficiency was increased 8.2 times that of the wild type. When 400 g/L lactose was used as the substrate, the conversion rate of M185A/F279I reached a high level of 22.8%, which shows great application potential for the enzymatic production of tagatose from lactose.


Assuntos
Galactose/metabolismo , Limosilactobacillus fermentum/genética , Lactose , Hexoses/metabolismo , Aldose-Cetose Isomerases/genética , Concentração de Íons de Hidrogênio
4.
Chinese Journal of Biotechnology ; (12): 912-929, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970413

RESUMO

Chitosanases represent a class of glycoside hydrolases with high catalytic activity on chitosan but nearly no activity on chitin. Chitosanases can convert high molecular weight chitosan into functional chitooligosaccharides with low molecular weight. In recent years, remarkable progress has been made in the research on chitosanases. This review summarizes and discusses its biochemical properties, crystal structures, catalytic mechanisms, and protein engineering, highlighting the preparation of pure chitooligosaccharides by enzymatic hydrolysis. This review may advance the understandings on the mechanism of chitosanases and promote its industrial applications.


Assuntos
Quitosana/química , Quitina , Glicosídeo Hidrolases/genética , Engenharia de Proteínas , Oligossacarídeos/química , Hidrólise
5.
Chinese Journal of Biotechnology ; (12): 2126-2140, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981194

RESUMO

ω-transaminase (ω-TA) is a natural biocatalyst that has good application potential in the synthesis of chiral amines. However, the poor stability and low activity of ω-TA in the process of catalyzing unnatural substrates greatly hampers its application. To overcome these shortcomings, the thermostability of (R)-ω-TA (AtTA) from Aspergillus terreus was engineered by combining molecular dynamics simulation assisted computer-aided design with random and combinatorial mutation. An optimal mutant AtTA-E104D/A246V/R266Q (M3) with synchronously enhanced thermostability and activity was obtained. Compared with the wild- type (WT) enzyme, the half-life t1/2 (35 ℃) of M3 was prolonged by 4.8-time (from 17.8 min to 102.7 min), and the half deactivation temperature (T1050) was increased from 38.1 ℃ to 40.3 ℃. The catalytic efficiencies toward pyruvate and 1-(R)-phenylethylamine of M3 were 1.59- and 1.56-fold that of WT. Molecular dynamics simulation and molecular docking showed that the reinforced stability of α-helix caused by the increase of hydrogen bond and hydrophobic interaction in molecules was the main reason for the improvement of enzyme thermostability. The enhanced hydrogen bond of substrate with surrounding amino acid residues and the enlarged substrate binding pocket contributed to the increased catalytic efficiency of M3. Substrate spectrum analysis revealed that the catalytic performance of M3 on 11 aromatic ketones were higher than that of WT, which further showed the application potential of M3 in the synthesis of chiral amines.


Assuntos
Transaminases/química , Simulação de Acoplamento Molecular , Aminas/química , Ácido Pirúvico/metabolismo , Estabilidade Enzimática
6.
Acta Pharmaceutica Sinica B ; (6): 1648-1659, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982797

RESUMO

Peptides are increasingly important resources for biological and therapeutic development, however, their intrinsic susceptibility to proteolytic degradation represents a big hurdle. As a natural agonist for GLP-1R, glucagon-like peptide 1 (GLP-1) is of significant clinical interest for the treatment of type-2 diabetes mellitus, but its in vivo instability and short half-life have largely prevented its therapeutic application. Here, we describe the rational design of a series of α/sulfono-γ-AA peptide hybrid analogues of GLP-1 as the GLP-1R agonists. Certain GLP-1 hybrid analogues exhibited enhanced stability (t 1/2 > 14 days) compared to t 1/2 (<1 day) of GLP-1 in the blood plasma and in vivo. These newly developed peptide hybrids may be viable alternative of semaglutide for type-2 diabetes treatment. Additionally, our findings suggest that sulfono-γ-AA residues could be adopted to substitute canonical amino acids residues to improve the pharmacological activity of peptide-based drugs.

7.
Chinese Journal of Biotechnology ; (12): 4601-4614, 2022.
Artigo em Chinês | WPRIM | ID: wpr-970334

RESUMO

Creatinine levels in biological fluids are important indicators for the clinical evaluation of renal function. Creatinase (CRE, EC3.5.3.3) is one of the key enzymes in the enzymatic measurement of creatinine concentration, and it is also the rate-limiting enzyme in the whole enzymatic cascade system. The poor catalytic activity of CRE severely limits its clinical and industrial applications. To address this issue, a semi-rational design is applied to increase the activity of a creatinase from Alcaligenes sp. KS-85 (Al-CRE). By high-throughput screen of saturation mutagenesis libraries on the selected hotspot mutations, multiple variant enzymes with increased activity are obtained. The five-point best variant enzyme (I304L/F395V/K351V/Y63S/Q88A) were further obtained by recombine the improved mutations sites that to showed a 2.18-fold increased specific activity. Additionally, structure analysis is conducted to understand the mechanism of the activity change. This study paves the way for a better practical application of creatinase and may help further understand its catalytic mechanism.


Assuntos
Creatinina , Mutagênese Sítio-Dirigida , Ureo-Hidrolases/genética , Catálise
8.
Chinese Journal of Biotechnology ; (12): 1518-1526, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927797

RESUMO

Covalently anchoring of a ligand/metal via polar amino acid side chain(s) is often observed in metalloenzyme, while the substitutability of metal-binding sites remains elusive. In this study, we utilized a zinc-dependent alcohol dehydrogenase from Thermoanaerobacter brockii (TbSADH) as a model enzyme, analyzed the sequence conservation of the three residues Cys37, His59, and Asp150 that bind the zinc ion, and constructed the mutant library. After experimental validation, three out of 224 clones, which showed comparative conversion and ee values as the wild-type enzyme in the asymmetric reduction of the model substrate tetrahydrofuran-3-one, were screened out. The results reveal that the metal-binding sites in TbSADH are substitutable without tradeoff in activity and stereoselectivity, which lay a foundation for designing ADH-catalyzed new reactions via metal ion replacement.


Assuntos
Álcool Desidrogenase/metabolismo , Domínio Catalítico , Ligantes , Domínios Proteicos , Zinco/metabolismo
9.
Chinese Journal of Biotechnology ; (12): 1919-1930, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887772

RESUMO

Glycosidases are widely used in food and pharmaceutical industries due to its ability to hydrolyze the glycosidic bonds of various sugar-containing compounds including glycosides, oligosaccharides and polysaccharides to generate derivatives with important physiological and pharmacological activity. While glycosidases often need to be used under high temperature to improve reaction efficiency and reduce contamination, most glycosidases are mesophilic enzymes with low activity under industrial production conditions. It is therefore critical to improve the thermo-stability of glycosidases. This review summarizes the recent advances achieved in engineering the thermo-stability of glycosidases using strategies such as directed evolution, rational design and semi-rational design. We also compared the pros and cons of various techniques and discussed the future prospects in this area.


Assuntos
Glicosídeo Hidrolases/genética , Oligossacarídeos , Polissacarídeos , Engenharia de Proteínas
10.
Chinese Journal of Biotechnology ; (12): 163-177, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878551

RESUMO

Directed evolution is a cyclic process that alternates between constructing different genes and screening functional gene variants. It has been widely used in optimization and analysis of DNA sequence, gene function and protein structure. It includes random gene libraries construction, gene expression in suitable hosts and mutant libraries screening. The key to construct gene library is the storage capacity and mutation diversity, to screen is high sensitivity and high throughput. This review discusses the latest advances in directed evolution. These new technologies greatly accelerate and simplify the traditional directional evolution process and promote the development of directed evolution.


Assuntos
Sequência de Bases , Evolução Molecular Direcionada , Biblioteca Gênica , Mutação , Proteínas/genética
11.
Chinese Journal of Biotechnology ; (12): 1450-1458, 2020.
Artigo em Chinês | WPRIM | ID: wpr-826831

RESUMO

Heparin and heparan sulfate are a class of glycosaminoglycans for clinical anticoagulation. Heparosan N-sulfate-glucuronate 5-epimerase (C5, EC 5.1.3.17) is a critical modifying enzyme in the synthesis of heparin and heparan sulfate, and catalyzes the inversion of carboxyl group at position 5 on D-glucuronic acid (D-GlcA) of N-sulfoheparosan to form L-iduronic acid (L-IdoA). In this study, the heparin C5 epimerase gene Glce from zebrafish was expressed and molecularly modified in Escherichia coli. After comparing three expression vectors of pET-20b (+), pET-28a (+) and pCold Ⅲ, C5 activity reached the highest ((1 873.61±5.42) U/L) with the vector pCold Ⅲ. Then we fused the solution-promoting label SET2 at the N-terminal for increasing the soluble expression of C5. As a result, the soluble protein expression was increased by 50% compared with the control, and the enzyme activity reached (2 409±6.43) U/L. Based on this, site-directed mutations near the substrate binding pocket were performed through rational design, the optimal mutant (V153R) enzyme activity and specific enzyme activity were (5 804±5.63) U/L and (145.1±2.33) U/mg, respectively 2.41-fold and 2.28-fold of the original enzyme. Modification and expression optimization of heparin C5 epimerase has laid the foundation for heparin enzymatic catalytic biosynthesis.


Assuntos
Animais , Carboidratos Epimerases , Química , Genética , Escherichia coli , Expressão Gênica , Heparina , Metabolismo , Heparitina Sulfato , Metabolismo , Ácido Idurônico , Metabolismo , Proteínas de Peixe-Zebra , Química , Genética
12.
Chinese Journal of Biotechnology ; (12): 1829-1842, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771749

RESUMO

Industrial enzymes have become the core "chip" for bio-manufacturing technology. Design and development of novel and efficient enzymes is the key to the development of industrial biotechnology. The scientific basis for the innovative design of industrial catalysts is an in-depth analysis of the structure-activity relationship between enzymes and substrates, as well as their regulatory mechanisms. With the development of bioinformatics and computational technology, the catalytic mechanism of the enzyme can be solved by various calculation methods. Subsequently, the specific regions of the structure can be rationally reconstructed to improve the catalytic performance, which will further promote the industrial application of the target enzyme. Computational simulation and rational design based on the analysis of the structure-activity relationship have become the crucial technology for the preparation of high-efficiency industrial enzymes. This review provides a brief introduction and discussion on various calculation methods and design strategies as well as future trends.


Assuntos
Biocatálise , Biotecnologia , Enzimas , Química , Metabolismo , Engenharia Metabólica , Engenharia de Proteínas , Relação Estrutura-Atividade
13.
Chinese Journal of Biotechnology ; (12): 372-385, 2017.
Artigo em Chinês | WPRIM | ID: wpr-310615

RESUMO

As the scale of synthetic gene circuits grows with sophisticated functions, rational design appears to be a bottleneck to develop synthetic biological systems. In this review, we summarized the impact of gene expression noise and competition effect on the performance of synthetic gene circuits. We also summarized recent progresses on rational design approaches, such as digital-analog circuits, network topologies design, and information-theory-based optimization approaches. Finally, we discussed future directions for rational design of synthetic gene circuits.

14.
Rev. colomb. biotecnol ; 16(1): 19-28, ene.-jun. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-715294

RESUMO

Enzymes as immobilized derivatives have been widely used in Food, Agrochemical, Pharmaceutical and Biotechnological industries. Protein immobilization is probably the most used technology to improve the operational stability of these molecules. Bromelain (Ananas comosus) and papain (Carica papaya) are cystein proteases extensively used as immobilized biocatalyst with several applications in therapeutics, racemic mixtures resolution, affinity chromatography and others industrial scenarios. The aim of this work was to optimize the covalent immobilization of bromelain and papain via rational design of immobilized derivatives strategy (RDID) and RDID1.0 program. Were determined the maximum protein quantity to immobilize, the optimum immobilization pH (in terms of functional activity retention), was predicted the most probable configuration of the immobilized derivative and the probabilities of multipoint covalent attachment. As support material was used Glyoxyl-Sepharose CL 4B. The accuracy of RDID1.0 program´s prediction was demonstrated comparing with experimental results. Bromelain and papain immobilized derivatives showed desired characteristics for industrial biocatalysis, such as: elevate pH stability retaining 95% and 100% residual activity at pH 7.0 and 8.0, for bromelain and papain, respectively; high thermal stability at 30 °C retaining 90% residual activity for both immobilized enzymes; a catalytic configuration bonded by immobilization at optimal pH; and the ligand load achieve ensure the minimization of diffusional restrictions.


Las enzimas inmovilizadas han sido ampliamente utilizadas en las industrias Alimentaria, Agroquímica, Farmacéutica y Biotecnológica. La inmovilización de proteínas es, probablemente, la tecnología más empleada para elevar la estabilidad operacional de estas moléculas. La bromelina (Ananas comosus) y la papaína (Carica papaya) son cisteín proteasas extensamente usadas como biocatalizadores inmovilizados con disímiles aplicaciones en la terapéutica, resolución de mezclas racémicas, cromatografía de afinidad, entre otros escenarios industriales. El objetivo del presente trabajo fue optimizar la inmovilización covalente de las enzimas bromelina y papaína a través de la estrategia de diseño racional de derivados inmovilizados (RDID) y el programa RDID1.0. Se predijo la cantidad máxima de proteína a inmovilizar, el pH óptimo de inmovilización (en términos de retención de la actividad funcional), la configuración más probable del derivado inmovilizado y la probabilidad de enlazamiento covalente multipuntual. Como soporte de inmovilización de empleó Glioxil-Sepharose CL 4B. La precisión de las predicciones llevadas a cabo con el programa RDID1.0 fue validada comparando con los resultados experimentales obtenidos. Los derivados inmovilizados de bromelina y papaína mostraron características deseadas para la biocatálisis a nivel industrial, tales como: elevada estabilidad al pH reteniendo el 95% y 100% de actividad residual a pH 7.0 y 8.0, para la bromelina y la papaína, respectivamente; una elevada estabilidad térmica con la retención del 90% de actividad residual a 30 °C para ambas enzimas; al pH de inmovilización óptimo la configuración obtenida es catalíticamente competente; y la carga de ligando alcanzada asegura la disminución de las restricciones difusionales.


Assuntos
Ananas , Desenho Assistido por Computador , Enzimas , Imobilização , Papaína , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA