Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.322
Filtrar
1.
J. bras. nefrol ; 46(1): 18-28, Mar. 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534764

RESUMO

Abstract Introduction: Nephrotic syndrome (NS) is one of the reasons of end-stage kidney disease, and elucidating the pathogenesis and offer new treatment options is important. Oxidative stress might trigger pathogenesis systemically or isolated in the kidneys. Octreotide (OCT) has beneficial antioxidant effects. We aimed to investigate the source of oxidative stress and the effect of OCT on experimental NS model. Methods: Twenty-four non-uremic Wistar albino rats were divided into 3 groups. Control group, 2 mL saline intramuscular (im); NS group, adriamycin 5 mg/kg intravenous (iv); NS treatment group, adriamycin 5 mg/kg (iv) and OCT 200 mcg/kg (im) were administered at baseline (Day 0). At the end of 21 days, creatinine and protein levels were measured in 24-hour urine samples. Erythrocyte and renal catalase (CAT) and thiobarbituric acid reactive substance (TBARS) were measured. Renal histology was also evaluated. Results: There was no significant difference among the 3 groups in terms of CAT and TBARS in erythrocytes. Renal CAT level was lowest in NS group, and significantly lower than the control group. In treatment group, CAT level significantly increased compared with NS group. In terms of renal histology, tubular and interstitial evaluations were similar in all groups. Glomerular score was significantly higher in NS group compared with control group and it was significantly decreased in treatment group compared to NS group. Conclusions: Oxidative stress in NS might be due to the decrease in antioxidant protection mechanism in kidney. Octreotide improves antioxidant levels and histology in renal tissue and might be a treatment option.


Resumo Introdução: Síndrome nefrótica (SN) é uma das causas de doença renal em estágio terminal. É importante elucidar a patogênese e oferecer novas opções de tratamento. Estresse oxidativo pode desencadear a patogênese sistemicamente ou isoladamente nos rins. O octreotide (OCT) tem efeitos antioxidantes benéficos. Nosso objetivo foi investigar a fonte de estresse oxidativo e efeito do OCT no modelo experimental de SN. Métodos: Dividimos 24 ratos albinos Wistar não urêmicos em 3 grupos. Grupo controle, 2 mL de solução salina intramuscular (im); grupo SN, adriamicina 5 mg/kg intravenosa (iv); grupo tratamento SN, adriamicina 5 mg/kg (iv) e OCT 200 mcg/kg (im) foram administrados no início do estudo (Dia 0). Aos 21 dias, mediram-se os níveis de creatinina e proteína em amostras de urina de 24 horas. Mediu-se a catalase (CAT) eritrocitária e renal e a substância reativa ao ácido tiobarbitúrico (TBARS). Avaliou-se também histologia renal. Resultados: Não houve diferença significativa entre os três grupos em termos de CAT e TBARS em eritrócitos. O nível de CAT renal foi menor no grupo SN e significativamente menor que no grupo controle. No grupo tratamento, o nível de CAT aumentou significativamente em comparação com o grupo SN. Quanto à histologia renal, as avaliações tubular e intersticial foram semelhantes em todos os grupos. O escore glomerular foi significativamente maior no grupo SN em comparação com o grupo controle e diminuiu significativamente no grupo de tratamento em comparação com o grupo SN. Conclusões: Estresse oxidativo na SN pode ser devido à diminuição do mecanismo de proteção antioxidante nos rins. O octreotide melhora níveis de antioxidantes e histologia do tecido renal e pode ser uma opção de tratamento.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 95-102, 2024.
Artigo em Chinês | WPRIM | ID: wpr-999165

RESUMO

ObjectiveTo explore the mechanism of Buzhong Yiqitang-containing serum in alleviating the cisplatin resistance in human non-small cell lung cancer (A549/DDP) cells via regulating the nuclear factor E2-related factor 2 (Nrf2)/reactive oxygen species (ROS) signaling pathway. MethodThe serum containing Buzhong Yiqitang was prepared and A549/DDP cells were cultured and randomly grouped: blank (10% blank serum), cisplatin (10% blank serum+20 mg·L-1 cisplatin), Buzhong Yiqitang (10% Buzhong Yiqitang-containing serum+20 mg·L-1 cisplatin), ML385 (10% blank serum+5 μmol·L-1 ML385+20 mg·L-1 cisplatin), Buzhong Yiqitang+ML385 (10% Buzhong Yiqitang-containing serum+5 μmol·L-1 ML385+20 mg·L-1 cisplatin), tertiary butylhydroquinone (TBHQ) (10% blank serum+5 μmol·L-1 TBHQ+20 mg·L-1 cisplatin), and Buzhong Yiqitang+TBHQ (10% Buzhong Yiqitang-containing serum+5 μmol·L-1 TBHQ+20 mg·L-1 cisplatin). The median inhibitory concentration (IC50) of cisplatin in each group was determined by the cell counting kit-8 (CCK-8) method and the resistance index (RI) was calculated. The apoptosis rate was detected by flow cytometry. The ROS content of each group was determined with the DCFH-DA fluorescence probe. Western blot was employed to determine the protein levels of Nrf2, cleaved cysteinyl aspartate-specific protease-3 (cleaved Caspase-3), cytochrome C (Cyt C), and B-cell lymphoma-2 (Bcl-2). ResultCompared with those in the cisplatin group, the IC50 and RI of A549/DDP cells to cisplatin in Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 groups decreased (P˂0.05). Compared with the blank group, the cisplatin, Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 groups showed increased apoptosis rate of A549/DDP cells (P˂0.05). Compared with the blank group, cisplatin promoted the expression of Nrf2 (P˂0.05). Compared with the cisplatin group, Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 inhibited the expression of Nrf2 (P<0.05), elevated the ROS level (P˂0.05), up-regulated the protein levels of cleaved Caspase-3 and Cyt C, and down-regulated the protein level of Bcl-2 (P<0.05), which were the most significant in the Buzhong Yiqitang+ML385 group. Compared with the cisplatin group, the TBHQ group showed increased IC50 and RI of cisplatin (P<0.05), decreased apoptosis rate of A549/DDP cells (P<0.05), up-regulated protein levels of Nrf2 and Bcl-2 (P<0.05), lowered level of ROS (P˂0.05), and down-regulated protein levels of cleaved Caspase-3 and Cyt C (P<0.05). Compared with the TBHQ group, Buzhong Yiqitang+TBHQ decreased the IC50 and RI of cisplatin in A549/DDP cells (P<0.05), increased the apoptosis rate (P<0.05), down-regulated the protein levels of Nrf2 and Bcl-2 (P<0.05), increased ROS (P˂0.05), and up-regulated the protein levels of cleaved Caspase-3 and Cyt C (P<0.05). ConclusionBuzhong Yiqitang induced apoptosis by inhibiting Nrf2/ROS pathway to alleviate cisplatin resistance in A549/DDP cells.

3.
Organ Transplantation ; (6): 46-54, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005233

RESUMO

Objective To investigate the role and mechanism of spliced X-box binding protein 1 (XBP1s) in the senescence of primary renal tubular epithelial cells induced by hypoxia/reoxygenation (H/R). Methods Primary renal tubular epithelial cells were divided into the normal control group (NC group), H/R group, empty adenovirus negative control group (Ad-shNC group), targeted silencing XBP1s adenovirus group (Ad-shXBP1s group), empty adenovirus+H/R treatment group (Ad-shNC+H/R group) and targeted silencing XBP1s adenovirus+H/R treatment group (Ad-shXBP1s +H/R group), respectively. The expression levels of XBP1s in the NC, H/R, Ad-shNC and Ad-shXBP1s groups were measured. The number of cells stained with β-galactosidase, the expression levels of cell aging markers including p53, p21 and γH2AX, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were determined in the Ad-shNC, Ad-shNC+H/R and Ad-shXBP1s+H/R groups. Chromatin immunoprecipitation was employed to verify Sirtuin 3 (Sirt3) of XBP1s transcription regulation, and the expression levels of Sirt3 and downstream SOD2 after down-regulation of XBP1s were detected. Mitochondrial reactive oxygen species (mtROS) were detected by flow cytometry. Results Compared with the NC group, the expression level of XBP1s was up-regulated in the H/R group. Compared with the Ad-shNC group, the expression level of XBP1s was down-regulated in the Ad-shXBP1s group (both P<0.001). Compared with the Ad-shNC group, the number of cells stained with β-galactosidase was increased, the expression levels of p53, p21 and γH2AX were up-regulated, the levels of ROS, MDA and mtROS were increased, the SOD activity was decreased, the expression level of Sirt3 was down-regulated, and the ratio of Ac-SOD2/SOD2 was increased in the Ad-shNC+H/R group. Compared with the Ad-shNC+H/R group, the number of cells stained with β-galactosidase was decreased, the expression levels of p53, p21 and γH2AX were down-regulated, the levels of ROS, MDA and mtROS were decreased, the SOD activity was increased, the expression level of Sirt3 was up-regulated and the ratio of Ac-SOD2/SOD2 was decreased in the Ad-shXBP1s+H/R group (all P<0.05). Conclusions Down-regulation of XBP1s may ameliorate the senescence of primary renal tubular epithelial cells induced by H/R, which probably plays a role through the Sirt3/SOD2/mtROS signaling pathway.

4.
Organ Transplantation ; (6): 40-45, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005232

RESUMO

Ischemia-reperfusion injury (IRI) is an extremely complicated pathophysiological process, which may occur during the process of myocardial infarction, stroke, organ transplantation and temporary interruption of blood flow during surgery, etc. As key molecules of immune system, macrophages play a vital role in the pathogenesis of IRI. M1 macrophages are pro-inflammatory cells and participate in the elimination of pathogens. M2 macrophages exert anti-inflammatory effect and participate in tissue repair and remodeling and extracellular matrix remodeling. The balance between macrophage phenotypes is of significance for the outcome and treatment of IRI. This article reviewed the role of macrophages in IRI, including the balance between M1/M2 macrophage phenotype, the mechanism of infiltration and recruitment into different ischemic tissues. In addition, the potential therapeutic strategies of targeting macrophages during IRI were also discussed, aiming to provide reference for alleviating IRI and promoting tissue repair.

5.
Acta Pharmaceutica Sinica ; (12): 643-650, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016629

RESUMO

Three carboline fluorescent probes F1-F3 were designed and synthesized, based on lead compound JYJ-19, an antifungal compound discovered previously by our group. The antifungal activity in vitro results showed that compound F1 had moderate antifungal activity (MIC80 = 32 μg·mL-1). The stokes shift of F1 is 70 nm. The fluorescent probe F1 has good optical properties and can be used for fluorescence imaging research. Subcellular localization experiments results showed that F1 was enriched in the mitochondria of fungal cells. The detection of intracellular reactive oxygen species levels shows that JYJ-19 enhances intracellular reactive oxygen species levels. The above results indicated that carboline compounds could exert antifungal effects by acting on fungal mitochondria.

6.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 257-265, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013086

RESUMO

Objective@#To investigate the effects of PssL-NAC reactive oxygen species (ROS)-responsive nanoparticles on intracellular ROS production, inflammatory factor levels, collagen production, cell function and Toll-like receptor 4 (TLR4), NF-κB nuclear factor-κB (p65) pathway protein expression in human gingival fibroblasts (HGFs) induced by Porphyromonas gingivalis-lipopolysaccharide (P.g-LPS).@*Methods@#This study was reviewed and approved by the ethics committee. PssL-NAC microspheres containing oil soluble antioxidant N-acetylcysteine (NAC) were obtained by connecting the hydrophobic end of polycaprolactone (PCL) and the hydrophilic end of polyethylene glycol (PEG) via thioketal (TK) bonds in response to ROS, and self loading in the aqueous and oil phases. After preparation of the PssL-NAC microspheres and aqueous NAC solution, successful synthesis of the nanoparticles was verified by transmission electron microscopy. Then, HGFs were exposed to P.g-LPS (0, 5, or 10 μg/mL), P.g-LPS (0, 5, or 10 μg/mL)+NAC, and P.g-LPS (0, 5, or 10 μg/mL)+PssL-NAC, and the ROS levels in the different groups were observed under confocal microscopy to determine the concentration of P.g-LPS for use in subsequent experiments. The groups were as follows: control group (no treatment), P.g-LPS group (HGFs treated with P.g-LPS), NAC group (HGFs treated with P.g-LPS and NAC), and PssL-NAC group (HGFs treated with P.g-LPS and PssL-NAC). Cell counting kit-8 (CCK-8) assays verified the biosafety of PssL-NAC. The ROS levels in the different groups were detected by DCFH-DA probes and observed via confocal microscopy. Real-time qPCR (RT-qPCR) was used to monitor the gene expression levels of the intracellular inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen 1 (COL1) and collagen 3 (COL3). The effect of PssL-NAC on the migration of HGFs was observed via the scratch test. The protein expression of TLR4-NF-κB, and phosphorylated p65 (p-p65) in the TLR4-NF-κB pathway was evaluated by Western blot.@*Results@#PssL-NAC had no significant effect on HGF proliferation (P>0.05). At elevated P.g-LPS concentrations, PssL-NAC maintained intracellular ROS levels approximately twice those in the control group (P<0.001). PssL-NAC significantly decreased P.g-LPS-induced IL-6 (P<0.001) and TNF-α (P<0.001) gene expression and increased COL1 gene expression (P<0.001). After P.g-LPS stimulation, PssL-NAC restored cell migration to the control level (P>0.05) and decreased the protein expression of TLR4 (P<0.001), p65 (P = 0.006), and p-p65 (P = 0.017) in the TLR4-NF-κB pathway.@*Conclusion@#PssL-NAC maintains the appropriate intracellular ROS concentration, alleviates P.g-LPS-induced inflammation in HGFs through the TLR4-NF-κB pathway, and restores the cell functions of collagen production and migration in an inflammatory environment.

7.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 241-248, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013084

RESUMO

@#Oral plaque biofilms are one of the bases for the survival and metabolism of different bacteria. With the emergence of drug-resistant bacteria due to antibiotic abuse, the prevention and treatment of plaque biofilm-associated oral diseases are becoming increasingly difficult. Although some research progress has been made in the field of biofilm formation and destruction, there is still a lack of effective clinical therapies for plaque biofilm-associated oral diseases. Metal nanoenzymes possess the physical properties of nanoparticles and exhibit catalytic activity similar to that of natural enzymes. The nanoscale size of metal nanoenzymes provides a greater specific surface area to help reactive oxygen species spread rapidly to active catalytic sites and improve the antioxidant properties of nanoenzymes. Additionally, metal nanoenzymes are easy to produce using different methods, such as electrochemical reduction, solvent thermal synthesis and microwave-assisted synthesis. Moreover, metal nanoenzymes can produce a high concentration of hydroxyl radicals, catalyze plaque biofilm degradation, lyse glucan and inhibit biofilm formation by oxidative stress reactions, as well as kill bacteria by releasing metal ions. Thus, metal nanoenzymes are expected to become a new option for the prevention and treatment of oral plaque biofilm-associated diseases. However, metal nanoenzymes can enter organisms through oral, intravenous and respiratory routes, triggering potential toxic effects such as pulmonary toxicity, hepatotoxicity and neurotoxicity. In a complex biological environment, the occurrence of metal nanoenzymes toxicity may involve multiple mechanisms, and the mechanism of action and safety need to be thoroughly investigated. In this paper, we intend to describe the research progress on metal nanoenzymes through an overview of their properties, antibacterial mechanisms, biotoxicity and applications in the prevention and treatment of oral plaque biofilm-related diseases, which may provide new ideas for the prevention and treatment of these diseases.

8.
Acta Pharmaceutica Sinica B ; (6): 751-764, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011259

RESUMO

Recent progress in targeted metabolic therapy of cancer has been limited by the considerable toxicity associated with such drugs. To address this challenge, we developed a smart theranostic prodrug system that combines a fluorophore and an anticancer drug, specifically 6-diazo-5-oxo-l-norleucine (DON), using a thioketal linkage (TK). This system enables imaging, chemotherapy, photodynamic therapy, and on-demand drug release upon radiation exposure. The optimized prodrug, DON-TK-BM3, incorporating cyanine dyes as the fluorophore, displayed potent reactive oxygen species release and efficient tumor cell killing. Unlike the parent drug DON, DON-TK-BM3 exhibited no toxicity toward normal cells. Moreover, DON-TK-BM3 demonstrated high tumor accumulation and reduced side effects, including gastrointestinal toxicity, in mice. This study provides a practical strategy for designing prodrugs of metabolic inhibitors with significant toxicity stemming from their lack of tissue selectivity.

9.
Rev. chil. nutr ; 50(6)dic. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550795

RESUMO

Oxidative stress (OS) occurs when the antioxidant defense system is overwhelmed by the predominance of reactive oxygen species (ROS) and pro-oxidant factors. Several diseases such as hypertension, insulin resistance, type 2 diabetes mellitus and neurodegenerative diseases are characterized by chronic OS. Physical exercise constitutes an affordable tool to prevent or ameliorate these conditions. However, during physical activity, acute ROS are produced inducing an activation in peroxisome proliferator activated receptor-Gamma Coactivator-1alpha (PGC-1α), and nuclear factor erythroid-2 related factor 2 (Nrf2), PGC-1α/Nrf2 pathway. This signaling pathway facilitates interaction with antioxidant response elements (ARE), thereby initiating an upregulation in the expression of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and mitochondrial biogenesis. In both cases, whether involving healthy animals or individuals engaged in physical exercise, supplementation with antioxidant scavengers leads to a reduction in the expression and activity of PGC-1α, SOD, CAT, and GPX across various tissues, which is not observed with indirect antioxidants. The preventive role of physical exercise against chronic OS is avoided when executed in conjunction with supplementation of scavenger antioxidants. However, similar to exercise, the indirect antioxidant apigenin can activate the PGC1-α/Nrf2 signaling pathway. Here, we summarize evidence supporting apigenin as a non-nutritional supplement that could enhance the adaptive effects of exercise, improving the endogenous antioxidant defense. Therefore, apigenin could be an interesting supplement to enhance the endogenous antioxidant adaptation induced by exercise in healthy subjects, but also to improve the effectiveness of exercise to prevent oxidative stress-associated diseases.


El estrés oxidativo (OS) ocurre cuando el sistema de defensa antioxidante es sobrepasado por el predominio de especies reactivas de oxígeno (ROS) y factores prooxidantes. Varias enfermedades como la hipertensión, la resistencia a la insulina, la diabetes mellitus tipo 2 y enfermedades neurodegenerativas se caracterizan por un OS crónico. El ejercicio físico constituye una herramienta asequible para prevenir o mejorar estas enfermedades. Sin embargo, durante la actividad física, se producen ROS agudas que inducen una activación en la vía PGC-1α/Nrf2. Esta vía de señalización facilita la interacción con los elementos de respuesta antioxidante (ARE), iniciando así una regulación que permite la expresión de enzimas antioxidantes, incluidas SOD, CAT, GPX y biogénesis mitocondrial. En ambos casos, ya sea que se trate de animales sanos o de individuos que practican ejercicio físico, la suplementación con antioxidantes "scavengers" conduce a una reducción en la expresión y actividad de PGC-1α, SOD, CAT y GPX en varios tejidos, lo que no se observa con antioxidantes "indirectos". El papel preventivo del ejercicio físico contra el OS crónico se atenúa cuando se realiza en conjunto con la suplementación de antioxidantes "scavengers". Sin embargo, de manera similar al ejercicio, la apigenina es un antioxidante "indirecto" que puede activar la vía de señalización PGC1-α/Nrf2. Aquí, resumimos la evidencia que respalda a apigenina como un suplemento no-nutricional que podría mejorar los efectos adaptativos del ejercicio, mejorando la defensa antioxidante endógena de sujetos sanos que no tienen suficiente tiempo para hacer ejercicio.

10.
Indian J Physiol Pharmacol ; 2023 Jun; 67(2): 131-135
Artigo | IMSEAR | ID: sea-223989

RESUMO

Objectives: Radiofrequency electromagnetic radiation (RF-EMR) from mobile phones is known to produce a stress response because of its effect on hypothalamus. Mobile phones have become an integral part of our lives with increasing usage not only in terms of number of users but also increase in talk time. The present study aimed to study the effect of mobile phone radiofrequency electromagnetic radiations on oxidative stress and feeding behaviour assessment in Sprague Dawley (SD) rats. Materials and Methods: Twelve male SD rats of 10–12 weeks old, weighing 180–220 g, were housed and allowed to acclimatise in a room with 12:12 h light-dark cycle with ad libitum amount of food and reverse osmosis (RO) water before the start of the study. Then, rats were divided into control and RF-EMR exposed groups, and everyday feed intake and body weight were measured. At the end of the study period, blood sample was collected through retro orbital puncture for biochemical investigations. Results: The present study showed significant increase in malondialdehyde and serum corticosterone levels and decrease feeding behaviour in rats exposed to RF-EMR in rats exposed to RF-EMR. Conclusion: This study proves that mobile RF-EMR causes oxidative stress and oxidative damage leading to decreased feeding behaviour in SD rats.

11.
Horiz. meÌüd. (Impresa) ; 23(2)abr. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1440192

RESUMO

Los radicales libres son compuestos caracterizados por tener un electrón desapareado en su orbital externo, condición que los torna altamente reactivos, es decir, tienen la propiedad de interactuar a través de reacciones controladas por difusión con proteínas, lípidos y ácidos nucleicos. También se les ha designado como especies reactivas de oxígeno (ERO), especies reactivas de nitrógeno (ERN) o especies reactivas de azufre (ERA). En el organismo humano se generan, principalmente, en la cadena transportadora de electrones mitocondrial, donde específicamente participan los complejos respiratorios I y III que tienen la propiedad de reducir al oxígeno y convertirlo en anión superóxido; así mismo, pueden formarse haciendo uso de una gran diversidad de reacciones enzimáticas y no enzimáticas en las que intervienen sustancias que la célula sintetiza o que se ingieren con los alimentos y algunos medicamentos. El ser humano dispone de un sistema antioxidante, que es de naturaleza enzimática y no enzimática, el cual tiene como función proteger al organismo de la acción nociva de los radicales libres; comprende enzimas -como catalasa, superóxido dismutasa, tiorredoxina, etc.- y compuestos no enzimáticos -como glutatión, ferritina, mioglobina, etc.-, pero no son lo suficientemente eficientes para protegerlo, por lo que es necesaria la ingesta de alimentos que contengan en su composición sustancias con propiedades antioxidantes cuya acción protectora dependerá de su reactividad química, así como de su concentración; estos compuestos antioxidantes se encuentran principalmente en las frutas y verduras, habiéndose identificado polifenoles, flavonoides, carotenoides, vitamina C, vitamina E, etc. Un número considerable de evidencias sugiere que la ingesta de sustancias antioxidantes protege al organismo del efecto dañino de los radicales libres, pero cuando prevalece la acción oxidante sobre la antioxidante puede conducirse al estrés oxidativo, condición que está estrechamente vinculada con una gran diversidad de enfermedades crónicas no transmisibles como cáncer, diabetes mellitus, obesidad, psoriasis, aterosclerosis, entre otras. Todo ello parece indicar que el término "estado estable redox celular" describe de manera apropiada la constante adaptación a una situación de rápido recambio químico, y sugiere que las sustancias implicadas en este proceso se designen como "especies biológicamente reactivas" en razón de la existencia de compuestos nocivos como el peróxido de hidrógeno, peroxinitrito, etc., que no son propiamente radicales libres, pero ejercen efectos dañinos a las células.


Free radicals are compounds characterized by having an unpaired electron in their outer orbit, a condition that makes them highly reactive, i.e., they interact through diffusion-controlled reactions with proteins, lipids and nucleic acids. They have also been referred to as reactive oxygen species (ROS), reactive nitrogen species (RNS) or reactive sulfur species (RSS). In the human organism, they are mainly produced in the mitochondrial electron transport chain, where respiratory complexes I and III specifically participate and reduce oxygen by converting it into superoxide anion. Likewise, they can be formed through a wide variety of enzymatic and non-enzymatic reactions involving substances that are synthesized by cells or are ingested with food and some medicines. Human beings have an antioxidant system which is both enzymatic and non-enzymatic in nature and whose function is to protect the organism from the harmful action of free radicals. This system includes enzymes-such as catalase, superoxide dismutase, thioredoxin, etc.-and non-enzymatic compounds- such as glutathione, ferritin, myoglobin, etc. However, they are not efficient enough to protect it, so it is necessary to eat foods that contain substances with antioxidant properties whose protective action will depend on their chemical reactivity and their concentration. These antioxidant compounds are mainly found in fruits and vegetables, where polyphenols, flavonoids, carotenoids, vitamin C, vitamin E, etc. have been identified. A significant amount of evidence suggests that the intake of antioxidant substances protects the body from the damaging effect of free radicals, but when the oxidative action prevails over the antioxidant action, it can lead to oxidative stress, a condition that is closely linked to a wide variety of chronic non-communicable diseases including cancer, diabetes mellitus, obesity, psoriasis, atherosclerosis, among others. All this seems to indicate that the term "cellular redox steady state" more appropriately describes the constant adaptation to a situation of rapid chemical turnover and suggests that the substances involved in this process be designated as "biologically reactive species" due to the existence of harmful compounds such as hydrogen peroxide, peroxynitrite, etc., which are not-strictly speaking-free radicals but have toxic effects on cells.

12.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 831-836, 2023.
Artigo em Chinês | WPRIM | ID: wpr-987093

RESUMO

@#Oxidative stress is closely associated with the development of oral diseases such as caries, periodontitis and endodontitis. The accompanying oxidative stress during inflammation could aggravate tissue damage. However, numerous studies have shown that some dental materials, such as composite resins, bleach, drugs for root canal irrigation and dental implants, can give rise to abundant free radicals, which have adverse effects on peripheral tissues. Therefore, it is essential to supplement with extra antioxidants against free radicals. Plant-derived natural antioxidants have attracted great attention in biomedicine because of their excellent biocompatibility and easy access. This paper focused on the redox imbalance in the oral cavity and the application of natural antioxidants to oral therapy and their modification of dental materials. Current research shows that by constructing polyphenol-based metal organic nanoenzymes or adding vitamins and polyphenols to bionic hydrogels, the safety and utilization rate of antioxidants can be significantly improved. However, these polymer delivery systems have problems such as poor degradability, hepatotoxicity and nephrotoxicity, and the research is still in its infancy. In terms of material modification, it is crucial to choose the type and ratio of natural antioxidants and raw materials, as well as appropriate modification methods. A strong chemical bond between the antioxidant and the raw material may lead to the failure of antioxidant release from the modified composite, lowering the antioxidant activity. At the same time, the selection of polyphenols rich in pyrogallol functional groups can retain more free phenolic hydroxyl groups after chemical modification, which is conducive to greater antioxidant activity by the implant materials. Although research on natural antioxidants in oral therapy has made progress, there is a lack of data supporting clinical trials and long-term application effects, and further research is still needed.

13.
Journal of Southern Medical University ; (12): 552-559, 2023.
Artigo em Chinês | WPRIM | ID: wpr-986961

RESUMO

OBJECTIVE@#To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.@*METHODS@#The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.@*RESULTS@#The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).@*CONCLUSION@#Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.


Assuntos
Humanos , Sinoviócitos , Berberina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peróxido de Hidrogênio/metabolismo , Sincalida/metabolismo , Proliferação de Células , Artrite Reumatoide/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Fibroblastos , Autofagia , Células Cultivadas
14.
Journal of Peking University(Health Sciences) ; (6): 975-981, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1010156

RESUMO

OBJECTIVE@#To investigate the regulatory effect of interferon-α (IFN-α) on the apoptosis and killing function of CD56dimCD57+ natural killer (NK) cells in systemic lupus erythematosus (SLE) patients, and to explore the specific mechanism.@*METHODS@#A total of sixty-four newly treated SLE patients and sixteen healthy controls (HC) enrolled in the Second Hospital of Dalian Medical University were selected as the research subjects. And the gene expression levels of molecules related to NK cell-killing function were detected by real-time quantitative polymerase chain reaction. CD56dimCD57+ NK cells were co-cultured with the K562 cells, and the apoptotic K562 cells were labeled with Annexin-Ⅴ and 7-amino-actinomycin D. Peripheral blood mononuclear cells were treated with 20, 40, and 80 μmol/L hydrogen peroxide (H2O2), and treated without H2O2 as control, the expression level of perforin (PRF) was detected by flow cytometry. The concentration of IFN-α in serum was determined by enzyme linked immunosorbent assay. The expression levels of IFN-α receptors (IFNAR) on the surface of CD56dimCD57+ NK cells were detected by flow cytometry, and were represented by mean fluorescence intensity (MFI). CD56dimCD57+ NK cells were treated with 1 000 U/mL IFN-α for 24, 48 and 72 h, and no IFN-α treatment was used as the control, the apoptosis and the expression levels of mitochondrial reactive oxygen species (mtROS) were measured by flow cytometry and represented by MFI.@*RESULTS@#Compared with HC(n=3), the expression levels of PRF1 gene in peripheral blood NK cells of the SLE patients (n=3) were decreased (1.24±0.41 vs. 0.57±0.12, P=0.05). Compared with HC(n=5), the ability of peripheral blood CD56dimCD57+ NK cells in the SLE patients (n=5) to kill K562 cells was significantly decreased (58.61%±10.60% vs. 36.74%±6.27%, P < 0.01). Compared with the control (n=5, 97.51%±1.67%), different concentrations of H2O2 treatment significantly down-regulated the PRF expression levels of CD56dimCD57+ NK cells in a dose-dependent manner, the 20 μmol/L H2O2 PRF was 83.23%±8.48% (n=5, P < 0.05), the 40 μmol/L H2O2 PRF was 79.53%±8.56% (n=5, P < 0.01), the 80 μmol/L H2O2 PRF was 76.67%±7.16% (n=5, P < 0.01). Compared to HC (n=16), the serum IFN-α levels were significantly increased in the SLE patients (n=45) with moderate to high systemic lupus erythematosus disease activity index (SLEDAI≥10) [(55.07±50.36) ng/L vs. (328.2±276.3) ng/L, P < 0.001]. Meanwhile, compared with HC (n=6), IFNAR1 expression in peripheral blood CD56dimCD57+ NK cells of the SLE patients (n=6) were increased (MFI: 292.7±91.9 vs. 483.2±160.3, P < 0.05), and compared with HC (n=6), IFNAR2 expression in peripheral blood CD56dimCD57+ NK cells of the SLE patients (n=7) were increased (MFI: 643.5±113.7 vs. 919.0±246.9, P < 0.05). Compared with control (n=6), the stimulation of IFN-α (n=6) significantly promoted the apoptosis of CD56dimCD57+ NK cells (20.48%±7.01% vs. 37.82%±5.84%, P < 0.05). In addition, compared with the control (n=4, MFI: 1 049±174.5), stimulation of CD56dimCD57+ NK cells with IFN-α at different times significantly promoted the production of mtROS in a time-dependent manner, 48 h MFI was 3 437±1 472 (n=4, P < 0.05), 72 h MFI was 6 495±1 089 (n=4, P < 0.000 1), but there was no significant difference at 24 h of stimulation.@*CONCLUSION@#High serum IFN-α level in SLE patients may induce apoptosis by promoting mtROS production and inhibit perforin expression, which can down-regulate CD56dimCD57+ NK killing function.


Assuntos
Humanos , Interferon-alfa/metabolismo , Perforina/metabolismo , Leucócitos Mononucleares/metabolismo , Peróxido de Hidrogênio/metabolismo , Interferon gama/metabolismo , Antígeno CD56/metabolismo , Células Matadoras Naturais/metabolismo , Lúpus Eritematoso Sistêmico
15.
Journal of Pharmaceutical Practice ; (6): 14-17, 2023.
Artigo em Chinês | WPRIM | ID: wpr-953752

RESUMO

Reactive oxygen species(ROS) responsive liposomes are prepared based on the high level of ROS expression in the tumor microenvironment, enabling precise drug delivery to the tumor site. With the addition of photosensitizer, the controllability of drugs in liposomes can be further enhanced.

16.
Acta Pharmaceutica Sinica ; (12): 360-370, 2023.
Artigo em Chinês | WPRIM | ID: wpr-965699

RESUMO

Carnosic acid (CA) is the main phenolic diterpenoid active ingredient in plants such as rosemary and sage, and has antiviral, antioxidant, anti-inflammatory effects and so on, however, its antiviral activity against influenza virus infections was not reported. In this study, antiviral activities against influenza A virus infections of three main bioactive ingredients from rosemary, including rosmarinic acid, CA and ursolic acid, were evaluated using virus titer titration assay, and CA showed remarkable inhibition on influenza H5N1 replication in A549 cells. The antiviral activity of CA was further confirmed and its mechanism of action was investigated using the indirect immunofluorescence assay (IFA), Western blot and real-time fluorescence quantification polymerase chain reaction (qRT-PCR). The results showed that the 50% effective concentration (EC50) of CA against influenza H5N1 in A549 cells and MDCK cells were 4.30 and 3.64 μmol·L-1, respectively. Meanwhile, CA also showed inhibition on influenza virus 2009panH1N1 (EC50: 10.1 μmol·L-1) and H3N2 (EC50: 12.8 μmol·L-1) replications in A549 cells. Mechanistic studies showed that antiviral activity of CA is related to its induction of heme oxygenase-1 (HO-1) in A549 cells and suppression on production of reactive oxygen in H5N1-infected cells.

17.
Journal of Pharmaceutical Practice ; (6): 155-159, 2023.
Artigo em Chinês | WPRIM | ID: wpr-965565

RESUMO

Objective To explore the effect and mechanism of Bajitianwan on preventing D-galactose (D-gal)-induced osteoblast bone loss. Methods Osteoblasts isolated from 24 h old Wistar rats were injured by D-gal and intervened with Bajitianwan extract. The osteoblastic proliferation and differentiation were determined by MTT and alkaline phosphatase (ALP), respectively. The cell reactive oxygen species (ROS) levels were detected by DCFH-DA fluorescent probes. The expression of cellular oxidation-related protein nuclear factor erythroid 2-related factor 2 (Nrf2), phosphorylated protein kinase B (p-AKT), protein kinase B (AKT), heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase 1 (NQO1) were detected by Western blotting. The intranuclear expression of Nrf2 protein was measured by immunofluorescence. Results Bajitianwan extract had significantly increased the osteoblastic proliferation and differentiation, and significantly reduced the intracellular ROS level. Bajitianwan extract had activated the PI3K/AKT pathway via activating the phosphorylation of AKT in osteoblasts, and promoted NQO1 and HO-1 expression. In addition, Bajitianwan had significantly promoted the expression of Nrf2 in the nucleus of osteoblasts, activating Nrf2 signaling pathway, and further promoted bone formation. Conclusion This study confirmed that Bajitianwan could prevent D-gal injured osteoblastic bone loss for the first time. The mechanism might be related to the regulation of oxidative stress associated PI3K/AKT and Nrf2 signaling pathway.

18.
Journal of Environmental and Occupational Medicine ; (12): 224-229, 2023.
Artigo em Chinês | WPRIM | ID: wpr-964937

RESUMO

Background It has been found that fluoride may cause cardiomyocyte damage. c-Jun N-terminal kinases (JNK) signaling pathway plays an important role in apoptosis, but its role in fluorosis-induced cardiomyocyte damage is still unknown yet. Objective To explore the toxic effect of sodium fluoride (NaF) on H9c2 cardiomyocytes of rats and whether NaF affects cardiomyocyte apoptosis through the JNK signaling pathway. Methods According to the concentrations of sodium fluoride and whether sp600125 (JNK inhibitor) was added, cardiomyocytes of rats were divided into six groups, including control group, SP600125 group (SP group), 0.24, 0.48, and 0.96 mmol·L−1 NaF groups, and 0.96 mmol·L−1 NaF+SP600125 group (NaF+SP group). Cardiomyocytes exposed to NaF for 24 h were observed using a fluorescence inverted microscope. The changes of cell viability at 24, 48, and 72 h after the treatment were detected by CCK-8 method. The levels of reactive oxygen species (ROS) at 24 h after the treatment in H9c2 cardiomyocytes were determined by fluorescent probe method. The expression levels of Bcl-2, Bax, Caspase-3, and JNK mRNA at 24 h after the treatment were detected by real-time PCR. The protein expression levels of Bcl-2, Bax, Caspase-3, and p-JNK at 24 h after the treatment were detected by Western blotting. Results Compared with the control group, after being exposed to 0.48 and 0.96 mmol·L−1 NaF for 24 h, the cell growth density decreased. With the increase of NaF concentration, rounded cells and some suspended dead cells appeared. At 24h after exposure to NaF, the cell viability of the 0.48 and 0.96 mmol·L−1 NaF groups decreased compared with the control group (P<0.05). At 48h and 72h after exposure to NaF, the cell viability levels of the NaF treated groups were significantly lower than that of the control group (P<0.05). After NaF exposure for 24 h, compared with the control group, the intracellular ROS levels were increased (P<0.05); the mRNA expression levels of Bcl-2 were decreased to varying degrees, especially in the 0.48 and 0.96 mmol·L−1 NaF groups (P<0.05); the mRNA expression levels of Bax, Caspase-3, and JNK were increased (P<0.05); the protein expression levels of Bcl-2 were reduced (P<0.05); the protein expression levels of Bax, Caspase-3, and p-JNK were elevated (P<0.05). Compared with the 0.96 mmol·L−1 NaF group, the cell viability of the NaF+SP group was increased, the intracellular ROS level was decreased, the mRNA expression levels of Bax, Caspase-3, and JNK were decreased, the protein expression level of Bcl-2 was increased, and the protein expression levels of Bax, Caspase-3, and p-JNK were decreased (P<0.05); the expression level of Bcl-2 mRNA had a rising trend but showed no statistical significance (P>0.05). Conclusion Cardiomyocyte damage after excessive fluoride exposure may result from fluoride inducing excessive ROS production in cardiomyocytes, which may activate the JNK signaling pathway and induce cardiomyocyte apoptosis.

19.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 389-399, 2023.
Artigo em Chinês | WPRIM | ID: wpr-964433

RESUMO

Objective@# To explore the effects of red LED light mediated by the Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (KEAP1-NRF2/HO-1) pathway on osteogenic differentiation and oxidative stress damage of human periodontal ligament stem cells (hPDLSCs) induced by high glucose, which provides a basis for the application of red light-emitting diode (LED) light in cell antioxidative damage.@*Methods@#hPDLSCs were identified by flow cytometric analysis, alkaline phosphatase (ALP) staining and Alizarin red-S staining; hPDLSCs were pretreated in a high glucose environment for 48 hours and irradiated with 1, 3, or 5 J/cm2 red LED light. A CCK-8 assay was performed to choose the radiant exposure that had the strongest effect on promoting the cell proliferation rate for subsequent experiments. hPDLSCs were divided into a control group, a high glucose group and a high glucose+light exposure group. ALP staining, ALP activity, Alizarin red-S staining and quantitative calcified nodules were used to detect the osteogenic differentiation of hPDLSCs; qRT-PCR and Western blot were used to detect the gene and protein expression levels of ALP, runt-related transcription factor 2 (RUNX2) and osterix (OSX); the relative mRNA expression levels of antioxidant enzyme-related genes superoxide dismutase 2 (SOD2) and catalase (CAT) in hPDLSCs were detected by qRT-PCR; reactive oxygen species (ROS) levels were detected by fluorescence microscopy and flow cytometry; the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels in cell supernatants were detected by ELISA; the NRF2-specific inhibitor ML385 was used to inhibit the NRF2 pathway; ALP staining and ALP activity were used to detect the markers of early osteogenic differentiation; qRT-PCR was used to detect the gene expression of ALP, RUNX2 and OSX; and the protein expression levels of KEAP1, NRF2 and HO-1 were detected by Western blot.@*Results @# Identified, and irradiant exposure of 5 J/cm2 was chosen for subsequent experiments. Red LED light irradiation (5 J/cm2) improved the osteogenic differentiation of hPDLSCs induced by high glucose (P<0.05), increased the mRNA and protein levels of ALP, RUNX2 and OSX (P<0.05), upregulated the mRNA expression levels of SOD2 and CAT (P<0.05), reduced the levels of ROS (P<0.05), and reduced TNF-α and IL-1β levels in the cell supernatants (P<0.05). When ML385 was added to inhibit the NRF2 pathway, the ALP activity of cells was decreased (P<0.05); the gene expression levels of ALP, RUNX2 and OSX were downregulated (P<0.05); the protein level of KEAP1 was upregulated (P<0.05); and the protein levels of NRF2 and HO-1 were downregulated (P<0.05)@*Conclusion@#Red LED light may promote the proliferation and osteoblastic differentiation of hPDLSCs induced by high glucose through the KEAP1-NRF2/HO-1 pathway and reduce the oxidative stress damage to hPDLSCs induced by high glucose.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 202-209, 2023.
Artigo em Chinês | WPRIM | ID: wpr-961700

RESUMO

ObjectiveTo investigate the effect of exogenous H2O2 on secondary metabolism in Atractylodes chinensis and its mechanism. MethodFresh rhizomes of A. chinensis were treated with 5.0, 1.0, 0.2, 0.04 mmol·L-1 H2O2 solution and clean water, and the relationships between the contents of reactive oxygen species, activities of antioxidant enzymes, activities of key enzymes of secondary metabolites, and contents of secondary metabolites in A. chinensis were compared. ResultUnder treatment with exogenous H2O2, the content of reactive oxygen species and malondialdehyde (MDA) in the fresh rhizomes of A. chinensis were significantly elevated on the 4th day, and returned to normal level on the 6th-8th day. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were all increased first and then decreased, and reached the peak on the 4th, 4th-6th and 2th-4th day, respectively. The activities of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) and acetyl CoA carboxylase (ACC), key enzymes of the secondary metabolites, were remarkably enhanced, and under treatments with different concentrations of H2O2, the activities of key synthetic enzymes of the secondary metabolites in 0.2 mmol·L-1 H2O2 group were increased most, with the highest biosynthesis of secondary metabolites. The contents of atractylodin, β-eudesmol, atractylone, atractylenolide Ⅱ, and atractylenolide Ⅲ on the 6th day of 0.2 mmol·L-1 H2O2 treatment were 89.5%, 108.7%, 308.8%, 64.7% and 9.3%, respectively higher than those in the control. ConclusionThe antioxidant enzymes and secondary metabolites in A. chinensis synergistically maintain the balance of reactive oxygen species, and exogenous H2O2 can improve the medicinal quality of A. chinensis remarkably.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA