Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. arch. biol. technol ; 64(spe): e21200045, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1278460

RESUMO

Abstract Natural gas steam reforming is commonly used for hydrogen production. However, research has shown that ethanol autothermal reforming can produce cleaner hydrogen gas efficiently. Despite this, there is a lack of studies on the energy self-sufficiency conditions of the ethanol autothermal reform. In this paper, we use simulations and the Response Surface Methodology (RSM) for the multivariate analysis of the energy self-sufficiency conditions in this process. First, we constructed and validated an industrial flowchart. After that, RSM allowed us to assess the process variables effects. The process variables studied were temperature (0 to 1000 ºC), pressure (20 to 30 bar), steam/ethanol ratio (2 to 5 mol/mol) and O2/ethanol ratio (0 to 1.5 mol/mol). We observe that the temperature and steam/ethanol ratio increase have a positive effect on hydrogen production. On the contrary, the O2/ethanol ratio increase has a negative effect, and the pressure increase is not statistically significant on hydrogen production. Therefore, the pressure was used at its minimum level (20 bar) while the temperature and the steam/ethanol ratio at its maximum levels (1000 ºC and 5 mol/mol). We also evaluated the energy consumption for the Autothermal Reactor (ATR). The reactor consumed 477.92 kJ/mol ethanol to produce 5.12 mol H2/mol ethanol when we use 1000 ºC, 20 bar, steam/ethanol 5 mol/mol, and O2/ethanol 0 mol/mol. ATR's energy self-sufficiency is achieved by using 1000 ºC, 20 bar, steam/ethanol 5 mol/mol, and O2/ethanol 0.86 mol/mol. In these conditions, 3.95 mol H2/mol ethanol is produced with 0 kJ/mol ethanol.


Assuntos
Etanol , Gás Natural , Energia Renovável , Hidrogênio , Exercício de Simulação , Modelos Anatômicos
2.
Braz. arch. biol. technol ; 61(spe): e18000360, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974126

RESUMO

ABSTRACT This study presents a system of conversion of mechanical energy produced by physical activity into electric energy obtained by a CC generator coupled to the pedal of an ergometric bicycle. It presents the converter that will be used to adjust the voltage and power coming from the system, as well as the details of the converter design, the simulation and the primary experimental results of the structure. The methodological procedures related to the development of the converter and data acquisition through simulation were carried out based on the bibliographic research. The study is documentary as equipment manuals were used.


Assuntos
Fontes Geradoras de Energia , Esforço Físico , Veículos Off-Road
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA