Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of the Korean Neurological Association ; : 324-332, 2016.
Artigo em Coreano | WPRIM | ID: wpr-182774

RESUMO

BACKGROUND: The extract and hemiterpene glycosides of Ilex Rotunda Thunb exert antioxidant and anti-inflammatory effects. The effect of rotundarpene on apoptosis in neuronal cells caused by the 1-methyl-4-phenylpyridinium (MPP⁺) has not been reported previously. METHODS: Using differentiated PC12 cells and human neuroblastoma SH-SY5Y cells, we investigated the effect of rotundarpene on MPP⁺-caused apoptosis in relation to the cell death process. RESULTS: MPP⁺-induced cell death was identified using the MTT and neutral red uptake tests. Apoptosis was induced by eliciting decreases in the cytosolic levels of Bid and Bcl-2 proteins, increases in the cytosolic levels of Bax and p53, disruption of the mitochondrial transmembrane potential, and the release of cytochrome c and the activation of caspase-8, -9, and -3 in differentiated PC12 cells and SH-SY5Y cells. Treatment with rotundarpene reduced the MPP⁺-induced changes in the levels of apoptosis-regulated proteins, formation of reactive oxygen species, depletion and oxidation of glutathione, and cell death in both PC12 and SH-SY5Y cells. CONCLUSIONS: Rotundarpene may reduce MPP⁺-induced apoptosis in neuronal cells by suppressing the activation of the mitochondria-mediated pathway and the caspase-8 and Bid pathways. Rotundarpene appears to act by inhibiting the production of reactive oxygen species and by the depletion and oxidation of glutathione.


Assuntos
Animais , Humanos , 1-Metil-4-fenilpiridínio , Apoptose , Caspase 8 , Morte Celular , Citocromos c , Citosol , Glutationa , Glicosídeos , Ilex , Potenciais da Membrana , Neuroblastoma , Neurônios , Vermelho Neutro , Células PC12 , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA