Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Journal of Radiology ; : 526-533, 2018.
Artigo em Inglês | WPRIM | ID: wpr-715132

RESUMO

OBJECTIVE: To compare the observer preference of image quality and radiation dose between non-grid, grid-like, and grid images. MATERIALS AND METHODS: Each of the 38 patients underwent bedside chest radiography with and without a grid. A grid-like image was generated from a non-grid image using SimGrid software (Samsung Electronics Co. Ltd.) employing deep-learning-based scatter correction technology. Two readers recorded the preference for 10 anatomic landmarks and the overall appearance on a five-point scale for a pair of non-grid and grid-like images, and a pair of grid-like and grid images, respectively, which were randomly presented. The dose area product (DAP) was also recorded. Wilcoxon's rank sum test was used to assess the significance of preference. RESULTS: Both readers preferred grid-like images to non-grid images significantly (p < 0.001); with a significant difference in terms of the preference for grid images to grid-like images (p = 0.317, 0.034, respectively). In terms of anatomic landmarks, both readers preferred grid-like images to non-grid images (p < 0.05). No significant differences existed between grid-like and grid images except for the preference for grid images in proximal airways by two readers, and in retrocardiac lung and thoracic spine by one reader. The median DAP were 1.48 (range, 1.37–2.17) dGy*cm2 in grid images and 1.22 (range, 1.11–1.78) dGy*cm2 in grid-like images with a significant difference (p < 0.001). CONCLUSION: The SimGrid software significantly improved the image quality of non-grid images to a level comparable to that of grid images with a relatively lower level of radiation exposure.


Assuntos
Humanos , Pontos de Referência Anatômicos , Pulmão , Exposição à Radiação , Radiografia , Coluna Vertebral , Tórax
2.
Chinese Journal of Radiological Medicine and Protection ; (12): 79-82, 2011.
Artigo em Chinês | WPRIM | ID: wpr-414045

RESUMO

Objective To facilitate activity measurement by using the thimble ionization chamber in hospitals,to obtain air kerma scatter correction factor of medical afterloading of 192Ir source by developing an available and convenient calculation method.Methods According to International Atomic Energy Agency (IAEA) 1079 Report to calculate the scatter correction factor of 192 Ir source,to measure air kenna of 192Ir source with and without lead shield using thimble ionization chamber.Simulation measurement conditions were used to calculate scatter correction factor of 192Ir source and comparison was made between experimental results and literature records.At the same time,the different ionization chamber models were simulated at different room sizes to obtain scattering correction factor of 192 Ir source.ResultsComparison was made between the simulation scatter correction factors of 192Ir source and experiment by the shadow shield,and the relative deviation was 0.8%.The deviation of the 192 Ir activity calculated according to the simulated scatter correction factor and measured by well type ionization chamber was 2.4%.By comparison between the calculated results by using two kinds of spherical ionization chamber and those ones deduced by IAEA 1079 Report,the relative deviations ranged within 0.3%-0.4%.Five different types of thimble ionization chamber and different room sizes were simulated and calculated by MC simulation,with the relative deviation within 3%.Conclusions Monte Carlo simulation method for calculating afterloading 192 Ir source's scatter correction factor is feasible,and this method is convenient for use in the thimble chamber for brachytherapy QA work in the hospital.

3.
Nuclear Medicine and Molecular Imaging ; : 40-47, 2006.
Artigo em Coreano | WPRIM | ID: wpr-182821

RESUMO

PURPOSE: The aim of this study was to examine the effects of attenuation correction (AC) and scatter correction (SC) on the quantification of PET count rates. MATERIALS AND METHODS: To assess the effects of AC and SC, 18F-FDG PET images of phantom and cat brain were acquired using microPET R4 scanner. Thirty-minute transmission images using 68Ge source and emission images after injection of FDG were acquired. PET images were reconstructed using 2D OSEM. AC and SC were applied. Regional count rates were measured using ROIs drawn on cerebral cortex including frontal, parietal, and latral temporal lobes and deep gray matter including head of caudate nucleus, putamen and thalamus for pre- and post-AC and SC images. The count rates were then normalized with the injected dose per body weight. To assess the effects of AC, count ratio of "deep gray matter/cerebral cortex" was calculated. To assess the effects of SC, ROIs were also drawn on the gray matter (GM) and white matter (WM), and contrast between them ((GM-WM)/GM) was measured. RESULTS: After the AC, count ratio of "deep gray matter/cerebral cortex" was increased by 17+/-7%. After the SC, contrast was also increased by 12+/-3%. CONCLUSION: Relative count of deep gray matter and contrast between gray and white matters were increased after AC and SC, suggesting that the AC would be critical for the quantitative analysis of cat brain PET data.


Assuntos
Animais , Gatos , Peso Corporal , Encéfalo , Núcleo Caudado , Córtex Cerebral , Fluordesoxiglucose F18 , Cabeça , Putamen , Rabeprazol , Lobo Temporal , Tálamo
4.
Korean Journal of Nuclear Medicine ; : 163-173, 2005.
Artigo em Coreano | WPRIM | ID: wpr-106859

RESUMO

PURPOSE: Abutted scatter energy windows used for a triple energy window (TEW) method may provide wrong estimation of scatter. This study is to propose an extended TEW (ETEW) method, which doesn't require abutted scatter energy windows and overcomes the shortcomings of TEW method. MATERIALS AND METHODS: The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection windows, which can overestimate or underestimate scatter. The ETEW is compared to the TEW using Monte Carlo simulated data for point sources as well as hot and cold spheres in a cylindrical water phantom. Various main energy window widths (10 %, 15 % and 20 %) were simulated. Both TEW and ETEW improved image contrast, % recovery coefficients and normalized standard deviation. RESULTS: Both of TEW and ETEW improved image contrast and % recovery coefficients. Estimated scatter components by the TEW were not proportional to the true scatter components over the main energy windows when ones of 10 %, 15 %, and 20 % were simulated. The ETEW linearly estimated scatter components over the width of the main energy windows. CONCLUSION: We extended the TEW method into the method which could linearly estimate scatter components over the main energy windows.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único , Água
5.
Korean Journal of Nuclear Medicine ; : 191-199, 2005.
Artigo em Coreano | WPRIM | ID: wpr-106856

RESUMO

PURPOSE: In order to obtain better quantitation of kidney uptake, this study is to evaluate a conjugate view method (CVM) using a geometric mean attenuation correction for kidney uptake and to compare it to Gate's method. MATERIALS AND METHODS: We used a Monte Carlo code, SIMIND and a Zubal phantom, to simulate kidney uptake. SIMIND was both simulated with or without scatter for the Zubal phantom. Also, a real phantom test was carried out using a dual-head gamma camera. The activity of 0.5 mCi was infused into two small cylinder phantoms of 5 cm diameter, and then, they were inserted into a cylinder phantom of 20 cm diameter. The results by the CVM method were compared with ideal data without both of attenuation and scatter and with Gate's method. The CVM was performed with or without scatter correction. The Gate's method was performed without scatter correction and it was evaluated with regards to 0.12 cm (-1) and 0.15 cm (-1) attenuation coefficients. Data were analyzed with comparisons of mean counts in the regions of interest (ROI), profiles drawn over kidney images and linear regression. Correlation coefficients were calculated with ideal data, as well. RESULTS: In the case of the computer simulation, mean counts measured from ideal data, the CVM and the Gate's method were (right: 998 +/- 209, left: 896 +/- 249), (right: 911 +/- 207, left: 815 +/- 265), and (right: 1065 +/- 267, left: 1546 +/- 267), respectively. The ideal data showed good correlation with the CVM and the correlation coefficients of the CVM, Gate's method were (right: 0.91, left: 0.93) and (right: 0.85, left: 0.90), respectively. CONCLUSION: The conjugate view method using geometric mean attenuation correction resulted in better accuracy than the Gate's method. In conclusion, the conjugate view method independent of renal depths may provide more accurate kidney uptake.


Assuntos
Simulação por Computador , Câmaras gama , Rim , Modelos Lineares
6.
Korean Journal of Nuclear Medicine ; : 33-42, 2001.
Artigo em Coreano | WPRIM | ID: wpr-203649

RESUMO

PURPOSE: The purpose of this study was to evaluate the effect of scatter correction on the assessment of myocardial perfusion and left ventricular function by gated Tc-99m myocardial SPECT. MATERIALS AND METHODS: Subjects were 11 normal volunteers, 20 patients with non-cardiac chest pain and 13 patients with coronary artery diseases. We classified above 3 groups into normal and diseased groups. Scatter correction was done using dual-energy-window scatter correction method (DEW-SC). We compared acquired counts, image contrast, corrected maximum relative counts, indices of left ventricular function, extent and severity of perfusion defects calculated by 'CEqual program' between scatter non-corrected and corrected images. RESULTS: Scatter corrected studies was lower in counts by 18+/-3% than uncorrected studies, but image contrast were improved in all cases. Scatter correction using DEW-SC took 3 minutes to complete, and 512 kB memory to store. There were no significant differences among indices of left ventricular function between scatter non-corrected and corrected images. Although extents of perfusion defects were not significantly different, severity was severer in scatter corrected images. CONCLUSION: Scatter correction using DEW-SC is simple to do, and improves image contrast without changing other indices of myocardial perfusion and function.


Assuntos
Humanos , Dor no Peito , Doença da Artéria Coronariana , Voluntários Saudáveis , Memória , Perfusão , Tomografia Computadorizada de Emissão de Fóton Único , Função Ventricular Esquerda
7.
Korean Journal of Nuclear Medicine ; : 471-481, 1998.
Artigo em Coreano | WPRIM | ID: wpr-191250

RESUMO

The goals of developments in nuclear medicine instrumentation are to offer a higher-quality image and to aid diagnosis, prognosis assessment or treatment planning and monitoring. It is necessary for physicists and engineers to improve or design new instrumentation and technique, and to implement, validate, and apply these new approaches in the practice of nuclear medicine. The researches in physical properties of detectors and crystal materials and advance in image analysis technology have improved quantitative and diagnostic accuracy of nuclear medicine images. This review article presents recent developments in nuclear medicine instrumentation, including scatter and attenuation correction, new detector technology, tomographic image reconstruction methods, 511 keV imaging, dual modality imaging device, small gamma camera, PET developments, image display and analysis methods.


Assuntos
Diagnóstico , Câmaras gama , Processamento de Imagem Assistida por Computador , Medicina Nuclear , Prognóstico
8.
Korean Journal of Nuclear Medicine ; : 382-390, 1998.
Artigo em Coreano | WPRIM | ID: wpr-40475

RESUMO

PURPOSE: The pvrpose of this study was to evaluate the accuracy of radioactivity quantitation in Tc-99m SPECT by using combined scatter and attenuation correction. MATERIALS AND METHODS: A cylindrical phantom which simulates tumors (T) and normal tissue (B) was filled with varying activity ratios of Tc-99m. We acquired emission scans of the phantom using a three-headed SPECT system (Trionix, Inc.) witb two energy windows (photopeak window: 126 154 keV and scatter window: 101 123 keV). We performed the scatter correction with dual-energy window subtraction method (k=0.4) and Chang attenuation correction. Three sets of SPECT images were reconstructed using combined scatter and attenuation correction (SC+AC', attenuation correction (AC) and without any correction (NONE). We compared T/B ratio, irnage contrast [(T-B)/(T+B)) and absolute radioactivity with true values. RESULTS: SC+AC images had the highest mean values of T/B ratios. Image contrast was 0.92 in SC+AC, which was close to the true value of 1, and higher than AC (0.77) or NONE (0.80). Errors of true activity by SPECT images ranged from 1 to 11% for SC+AC, 22-47% for AC, and 2 16% for NONE in a phantom which was located 2.4cm from the phantom surface. In a phantom located 10,0cm from the surface, SC+AC underestimated by ?4%, NON.E 40%. However, AC overestimated by 10%. CONCLUSION: We conclude that accurate SPECT activity quantitation of Tc-99m distribution can be achieved by dual window scatter correc.tion combined with attenuation correction.


Assuntos
Radioatividade , Tomografia Computadorizada de Emissão de Fóton Único
9.
Journal of the Korean Society for Therapeutic Radiology ; : 101-112, 1989.
Artigo em Coreano | WPRIM | ID: wpr-51205

RESUMO

The treatment planning and dosimetry of small fields for stereotactic radiosurgery with 10 MV x-ray isocentrically mounted linear accelerator is presented. Special consideration in this study was given to the variation of absorbed dose with field size, the central axis percent depth doses and the combined moving beam dose distributon. The collimator scatter correction factors of small fields (1x1~3x3 cm2) were measured with ion chamber at a target chamber distance of 300cm where the projected fields were larger than the polystyrene buildup caps and it was calibrated with the tissue equivalent solid state detectors of small size (TLD, PLD, ESR and semiconductors). The central axis percent depth doses for 1x1 and 3x3 cm2 fields could be derived with the same acuracy by interpolating between measured values for larger fields and calcu1ated zero area data, and it was also calibrated with semiconductor detectors. The agreement between experimental and calculated data was found to be under +/-2% within the fields. The three dimensional dose planning of stereotactic focusing irradiation on small size tumor regions was performed with dose planning computer system (Therac 2300) and was verified with film dosimetry. The more the number of strips and the wider the angle of arc rotation, the larger were the dose delivered on tumor and the less the dose to surrounding the normal tissues. The circular cone, we designed, improves the alignment, minimizes the penumbra of the beam and formats ball shape of treatment area without stellate patterns. These dosimetric techniques can provide adequate physics background for stereotactic radiosurgery with small radiation fields and 10 MV x-ray beam.


Assuntos
Vértebra Cervical Áxis , Sistemas Computacionais , Dosimetria Fotográfica , Aceleradores de Partículas , Poliestirenos , Radiocirurgia , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA