Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Acta Pharmaceutica Sinica ; (12): 735-742, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016617

RESUMO

This study investigated the effect of different carrier materials on the in vitro properties of progesterone solid dispersions. The solid dispersions of the insoluble drug progesterone were prepared by hot melt extrusion technique using rheological properties as the index of investigation, and the in vitro properties of the solid dispersions were characterized. Scanning electron microscope revealed solid dispersions with rough surfaces and agglomerated microstructures into irregular lumpy particles. Differential scanning calorimetry and powder X-ray diffraction showed the change of progesterone crystalline form in solid dispersions from crystalline to amorphous state. In vitro dissolution studies showed that solid dispersions prepared with different carrier materials can effectively improve the dissolution rate of drugs. The results of the study showed that the type of carrier material had a significant effect on the in vitro properties of solid dispersions, providing a reference for the study of solid dispersions in the controlled release of insoluble drugs.

2.
Artigo | IMSEAR | ID: sea-226546

RESUMO

Background: The fact that about 90 % of newly discovered API’s or new molecular entity(NME) have little or no aqueous solubility, causes a significant protest to the initialization of development and their scale up of dosage form in the Pharma Industry. Aqueous solubility of API’s has critical role in drug dissolution or availability of drug at the site of action or bioavailability, when a dosage form is administered orally.Objective: The object of this study is to formulate a modified release tablet dosage form of a poorly aqueous soluble drug, which not only have higher aqueous solubility or bioavailability but also have sustained release characteristics with high mechanical strength &their commercial viability. Numerous techniques are available for the solubility enhancement but all individual techniques have its own limitations for commercialization.Method: Aqueous solubility of drugs is improved by the known Solubility enhancement techniques like Micronization &Solid dispersions. After successful solubility enhancement, sustained release or modified release tablets of poorly aqueous soluble drug can be easily formulated into a suitable shape or size by using a known Polymer Matrix Sintering Technology with commercial feasibility. Micronization of poorly water-soluble drugs can be performed by Air Jet Mill or Ball Mill. Whereas Solid dispersion technique involves, molecular dispersion of poorly soluble drug in a suitable inert carrier, to form an amorphous and highly soluble compounds. Sintering Technology is defined as the bonding of adjacent particle surfaces in a mass of powder, or in compact, by the application of heat. Conventional sintering technique involves the heating of compact at a temperature below the melting point of the solid constituents in a controlled environment under atmospheric pressure.Results: Enhanced solubility of poorly soluble API’s by these proposed techniques is due to either conversion of crystalline compound in to amorphous form or reduction of particle size to its molecular level by the application of Micronization or solid dispersion techniques. The developed modified release tablets will show a sustained release characteristic due to Sintering aspect and provides enhanced solubility of BCS class II or IV drugs.Conclusion: Novel modified release tablets have been designed through consolidation of Solubility enhancement and Polymer Matrix Sintering technologies. Simultaneous exploitation of well-known and established approaches- Micronization (optimum particle size reduction) or solid dispersion, optional surfactant and Polymer Matrix Sintering Technique in the recent concept, produces significant enhancement of solubility of poorly water soluble API’s without compromising the content uniformity of dosage form and also provide a modified or sustained release characteristics with high mechanical strength. The release profile of drug can be easily tailored by using combination of both techniques where challenges of low solubility are prominent.

3.
Braz. J. Pharm. Sci. (Online) ; 59: e22452, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439503

RESUMO

Abstract Candidiasis is one of the most common fungal infections of oral cavity in humans, causing great oral discomfort, pain and aversion to food. To develop more effective antifungal systems for the treatment of oral candidiasis, an oral mucoadhesive wafer containing sertaconazole solid dispersion (STZ-SD) was developed in this study. Dispersion of STZ in Soluplus® as a solubility enhancement excipient was done by melting, solvent evaporation and freeze drying method at various STZ to Soluplus® ratios. The optimized STZ-SD was then incorporated in the sodium carboxymethyl cellulose (SCMC) gel, xanthan gum gel, or their combination to prepare the lyophilized wafers. The swelling capacity, porosity, and mechanical, release and mucoadhesive properties of the wafers, together with their antifungal activity, were then evaluated. The melting method sample with the ratio of 8:1 showed the best results in terms of saturation solubility and dissolution rate. The STZ-SD-composite wafer exhibited higher hardness and mucoadhesion, as compared to those made of the SCMC polymer. The STZ-SD-wafer also exhibited a greater antifungal effect when compared to the STZ-wafer. The present study, thus, suggested that the STZ-SD-wafer could serve as a novel effective delivery system for oral candidiasis treatment.


Assuntos
Boca/patologia , Candidíase Bucal/tratamento farmacológico , Alimentos/classificação , Liofilização/classificação , Gengiva/anormalidades
4.
Acta Pharmaceutica Sinica ; (12): 1312-1321, 2022.
Artigo em Chinês | WPRIM | ID: wpr-924761

RESUMO

The amorphous solid dispersion is one of the most effective formulation approaches to enhance the oral bioavailability of poorly water-soluble drugs. However, the amorphous drugs tend to crystallize during storage or dissolution due to inadequate formulations, preparation techniques, storage and dissolution conditions, thus negating their advantages. Meanwhile, it is often difficult to establish in vitro-in vivo correlation for amorphous solid dispersions owing to the difference between dissolution media and physiological environments and between the apparent concentration and membrane transport flux, the dynamic process of the in vivo absorption, which put great challenges to the development of amorphous solid dispersion products. This review covers the recent progress on the mechanistic study of the in vitro dissolution and in vivo absorption of amorphous solid dispersions, aiming to provide guidance for the formulation development of poorly soluble drugs.

5.
Acta Pharmaceutica Sinica ; (12): 1486-1494, 2022.
Artigo em Chinês | WPRIM | ID: wpr-924736

RESUMO

Solid dispersion, a dispersion system in which drug molecules are highly dispersed in carrier materials, has been commonly used to improve the solubility and dissolution rate of poorly soluble drugs. The miscibility between drug and carrier is crucial to improve the dissolution performance and stability of solid dispersion. Therefore, the selection of carrier types and the optimization of drug loading are very important. In the current study, the solubility parameter method and Flory-Huggins theory were used to predict the miscibility between olaparib (OLP) and different carriers (VA64, Soluplus, Plasdone S630 and Kollidon K29/32). Besides, the carrier material with good miscibility was experimentally screened by differential scanning calorimetry (DSC). The optimum of drug-carrier ratio was further performed based on the miscibility phase diagram of drug and carrier. Theoretical calculation and experimental evaluation showed that the miscibility of OLP and VA64 was the best, and the drug loading of 30% could meet the requirements of large drug loading and physical stability. Polarizing light microscope, X-ray powder diffraction, DSC and laser confocal Raman spectroscopy exhibited that OLP was amorphous form in the solid dispersion system. Powder dissolution test demonstrated that the solid dispersion showed significantly enhanced dissolution rate in comparison to crystalline OLP. In this study, theoretical calculation and experimental evaluation were used to screen the types of carriers and optimize the drug loading, which provides an efficient strategy for the selection of carrier and the amount used in solid dispersion.

6.
Braz. J. Pharm. Sci. (Online) ; 58: e191023, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403698

RESUMO

Abstract In the work the andrographolide (AG)-solid dispersions (SDs) were prepared by the spray-drying method, using polyethylene glycol 8000 (PEG8000), Poloxamer188, polyvinylpyrrolidone K30 (PVPK30), Soluplus® as carrier materials. The effect of different polymers as carrier materials on the properties of the AG-SDs were studied. The results showed obvious differences in intermolecular interaction, thermal stability, drug state, powder properties, dissolution behavior, and so on of AG-SDs prepared using different polymers as carrier materials. AG-PEG8000-SD was a partial-crystalline and partial-amorphous powder with smaller surface area and pore volume, but it was easy to wetting and did not swell in contact with dissolved medium. AG-Soluplus®-SD was completely amorphous powder with larger specific surface area and pore volume, but it swelled in contact with water. Therefore, the dissolution profile of AG in AG-PEG8000-SD was similar to that in AG-Soluplus®-SD. Soluplus® and PEG8000 were suitable polymers to design AG-SDs, considering both physicochemical properties and dissolution behaviors. The results of this reseach showed that when selecting carrier materials for SD, we should not only consider the state of drugs in SD and the powder properties of SD, but also consider whether there is swelling when the carrier materials are in contact with the dissolution medium.


Assuntos
Polietilenoglicóis/efeitos adversos , Dissolução , Métodos , Polímeros/análise , Preparações Farmacêuticas/análise , Água , Secagem por Atomização
7.
São Paulo; s.n; s.n; 2022. 112 p. tab, graf.
Tese em Inglês | LILACS | ID: biblio-1416707

RESUMO

The antiparasitic niclosamide has shown promising anticancer activity in preclinical studies against several types of cancer, such as colorectal and prostate. Thus, the objective of this work was to develop innovative formulations for the repositioning of niclosamide as an anticancer agent. In chapter I, a critical review of the literature on the physicochemical properties of the drug was carried out, in addition the results of clinical studies against colorectal and prostate cancer. Besides, a review was carried out on studies that developed formulations containing this drug, as well as hypotheses to improve the biopharmaceutical performance of this molecule. In chapter II, the development of solid amorphous dispersion containing niclosamide was carried out. Drug/polymer solutions were acoustic levitated and characterized by synchrotron X-ray light. This set allowed fast, high quality measurements, as well as the identification of niclosamide recrystallization. Plasdone® and Soluplus® demonstrated better properties to form amorphous dispersions, with the latter showing superior solubility enhancement. The study showed that the developed formulation increased the apparent saturation solubility of niclosamide in water by two times. In chapter III the objective was the development, physicochemical characterization and in vitro anticancer activity of a niclosamide nanoemulsion, having HCT-116 cells as a cellular model. Preliminary results indicated Capmul® MCM C8 as the best liquid lipid for the system, but the first nanoemulsions containing this lipid were not stable to justify its usage. On the other hand, Miglyol® 812 indicated to be a suitable liquid lipid for the system. The niclosamide nanoemulsion (~200 nm) with Miglyol® 812 and poloxamer 188 was stable for 56 days, with a monomodal particle size distribution. Cell viability assay against HCT-116 cells demonstrated that niclosamide cytotoxicity is time and concentration dependent. Results herein obtained encourage further research to understand and optimize niclosamide performance as an anticancer drug substance


O antiparasitário niclosamida tem apresentado promissora atividade anticâncer em estudos pré- clínicos contra diversos tipos de câncer, como coloretal e próstata. Assim, o objetivo deste trabalho foi desenvolver formulações inovadoras para o reposicionamento da niclosamida como agente anticâncer. No capítulo I foi realizada revisão crítica da literatura sobre as propriedades físico-químicas do fármaco, além de resultados de estudos clínicos da niclosamida contra câncer de coloretal e de próstata. Além disso, foi feita revisão sobre estudos que desenvolveram formulações contendo esse fármaco, bem como hipóteses para melhorar o desempenho biofarmacêutico dessa molécula. No capítulo II foi realizado o desenvolvimento de dispersão solida amorfa contendo niclosamida. Soluções de fármaco/polímero foram levitadas em levitador acústico e caracterizadas por raios-X de luz síncrotron. Este conjunto permitiu medições rápidas e de alta qualidade, bem como identificação de recristalização da niclosamida. Plasdone® e Soluplus® demonstraram melhores propriedades para formar as dispersões amorfas, com o último apresentando aumento de solubilidade superior. O estudo mostrou que a formulação desenvolvida aumentou em duas vezes a solubilidade aparente de saturação da niclosamida em água. No capítulo III o objetivo foi o desenvolvimento, a caracterização físicoquímica e atividade anticâncer in vitro de uma nanoemulsão de niclosamida, tendo células HCT-116 como modelo celular. Resultados preliminares indicaram o Capmul® MCM C8 como o melhor lipídio líquido para o sistema, mas as primeiras nanoemulsões contendo este lipídio não foram estáveis para justificar seu uso. Por outro lado, Miglyol® 812 indicou ser um lipídio líquido adequado para o sistema. A nanoemulsão de niclosamida (~200 nm) com Miglyol® 812 e poloxâmero 188 foi estável por 56 dias, com distribuição monomodal do tamanho de partícula. O ensaio de viabilidade celular contra células HCT-116 demonstrou que a citoxicidade da niclosamida é dependente do tempo e da concentração. Os resultados aqui obtidos encorajam mais pesquisas para entender e otimizar o desempenho da niclosamida como uma substância anticancerígena


Assuntos
Técnicas In Vitro/métodos , Preparações Farmacêuticas/análise , Química Farmacêutica , Composição de Medicamentos/instrumentação , Niclosamida/administração & dosagem , Físico-Química , Estratégias de Saúde , Neoplasias do Colo/patologia , Reposicionamento de Medicamentos/instrumentação , Neoplasias/metabolismo
8.
Braz. J. Pharm. Sci. (Online) ; 58: e18946, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1364411

RESUMO

Abstract To investigate structure-property relationship of polymer-based curcumin solid dispersion (SD), three acrylic polymers were used to formulate curcumin SD by solvent evaporation method. Curcumin Eudragit EPO SD (cur@EPO), curcumin Eudragit RS PO SD (cur@RSPO) and curcumin Eudragit RL PO SD (cur@RLPO) showed deep red, golden orange and reddish orange color, respectively. Cur@RSPO entrapped 15.42 wt% of curcumin followed by cur@RL PO and cur@EPO. FTIR spectra indicated that in cur@EPO, curcumin may transfer hydrogen to the dimethylaminoethyl methacrylate group and thus change its color to red. In contrast, curcumin may form hydrogen bonding with Eudragit RS PO and Eudragit RL. Curcumin exists in amorphous state in three SDs as proved by differential scanning calorimetry and X-Ray diffraction measurement. In vitro digestion presented that lower pH value in simulated gastric fluid (SGF) stimulates the curcumin release from cur@EPO while permeability influences the release profile in other two SDs. When in simulated intestinal fluid (SIF), first order release model governs the release behaviors of all three SDs which showed sustained release pattern. Our results are helpful to elucidate how structure of polymer may impact on the major properties of curcumin contained SD and will be promising to broaden its therapeutic applications.


Assuntos
Polímeros , Curcumina/análise , Métodos , Solventes/administração & dosagem , Difração de Raios X/instrumentação , Técnicas In Vitro/métodos , Varredura Diferencial de Calorimetria/métodos , Evaporação/classificação , Espectroscopia de Infravermelho com Transformada de Fourier , Cor , Citrus sinensis/classificação , Concentração de Íons de Hidrogênio
9.
Braz. J. Pharm. Sci. (Online) ; 58: e18553, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1360166

RESUMO

Abstract The aqueous solubility of cefixime trihydrate (a water insoluble drug) using different hydrotropic agents was determined and solid dispersions of cefixime trihydrate were prepared by hydrotropic solubilization technique. The drugs content were determined. The aqueous solubility of v was increased many fold in presence of sodium acetate trihydrate as hydrotropic agent. This hydrotropic agent was used to prepare solid dispersion of cefixime trihydrate. Cefixime trihydrate and sodium acetate trihydrate were accurately weighed and taken in a 200 mL beaker. Distilled water 10-15 mL was taken to dissolve hydrotropic agent using heat (48-50 °C). The drug was then added to it and magnetically stirred till whole mass get viscous. The solid dispersions of cefixime trihydrate were characterized by XRD, DSC and IR studies. DSC thermogram, XRD and Infra-Red spectra were studied. Solid dispersions, thus prepared, showed faster release of the drug as compared to pure drug and physical mixture.


Assuntos
Solubilidade/efeitos dos fármacos , Preparações Farmacêuticas/análise , Métodos , Água , Acetato de Sódio/administração & dosagem , Cefixima/efeitos adversos
10.
Chinese Herbal Medicines ; (4): 310-316, 2022.
Artigo em Chinês | WPRIM | ID: wpr-953602

RESUMO

Objective: The current investigation aimed to determine the appropriate dosage form by comparing solid dispersion and liposome to achieve the purpose of improving the solubility and bioavailability of linarin. Methods: Linarin solid dispersion (LSD) and linarin liposome (LL) were developed via the solvent method and the thin film hydration method respectively. The Transwell chamber model of Caco-2 cells was established to evaluate the absorption of drug. The pharmacokinetics of linarin, LSD and LL in rats after ig administration were carried out by high performance liquid chromatography (HPLC) method. Results: The solubility of LSD and LL was severally 3.29 times and 3.09 times than that of linarin. The permeation coefficients of LSD and LL were greater than 10

11.
China Pharmacy ; (12): 1862-1867, 2021.
Artigo em Chinês | WPRIM | ID: wpr-886280

RESUMO

OBJECTIVE:To prepare Azelnidipine enteric solid dispersion and evaluate its quality. METHODS :Azelnidipine enteric solid dispersion was prepared by solvent method. Taking cumulative dissolution rate as the index ,single factor test was used to optimize carrier material type and its ratio. The quality of the product was evaluated by DSC ,XRD and FTIR ,and its stability was investigated. RESULTS :After azelnidipine and carrier material of Eudragit L 100-55 acrylic resin were prepared to enteric solid dispersion at a ratio of 1∶5(m/m),its dissolution rate was significantly improved. DSC ,XRD and FTIR method had all verified the crystal form of azelnidipine changed and it existed in amorphous form. The results of stability test showed that Azelnidipine enteric solid dispersion was stable under high temperature (60 ℃),high humidity (75%)and strong light [ (4 500±500)lx] for 10 days. CONCLUSIONS :Azelnidipine enteric solid dispersion by solvent method with Eudragit L 100-55 acrylic resin as carrier can eliminate the influence of crystal form ,improve dissolution and has good stability.

12.
Journal of China Pharmaceutical University ; (6): 195-202, 2021.
Artigo em Chinês | WPRIM | ID: wpr-876143

RESUMO

@#As a typical BCS Ⅱ drug, felodipine exhibits low solubility and high permeability. We herein investigated the effects of different solubilization strategies on the oral absorption of felodipine. Firstly felodipine tablets based on 200 μm, 150 μm and 25 μm particle size of bulk drug were prepared. Meanwhile, felodipine solid dispersion and felodipine nanosuspension with average particle size of (168.90 ± 6.22) nm, PDI of 0.11 ± 0.06 were prepared. The absorption rate, apparent permeability coefficient (Papp), absorption quality in duodenum, jejunum, ileum and colon of rats and in vivo pharmacokinetics of the above different felodipine preparations were investigated. The results of rat single-pass intestinal perfusion showed that the absorption of felodipine preparations in duodenum, jejunum and ileum was better than in colon. Felodipine had a wide absorption window in the small intestine, with the best absorption site in the small intestine. Papp of different felodipine preparations was greater than 2.0 × 10-5 cm/s. Thus, the low solubility was the main factor limiting the absorption. In vivo pharmacokinetic experiments demonstrated the solubilization strategies significantly improved the bioavailability. The bioavailabilities of felodipine tablets with particle sizes of 150 and 25 μm, as well as nanosuspension, and solid dispersion were 138.75%, 173.01%, 208.65% and 314.53% that of the tablets with particle size of 200 μm, respectively. Solubilization strategies can significantly improve the gastrointestinal absorption rate and absorption quality of felodipine, and thus improve its bioavailability, which provides some reference for the research on the improvement of oral absorption of BCS II drugs.

13.
São Paulo; s.n; s.n; 2021. 176 p. tab, graf.
Tese em Português | LILACS | ID: biblio-1396454

RESUMO

A baixa solubilidade aquosa dos insumos farmacêuticos ativos (IFA) é um grande desafio no desenvolvimento de formulações farmacêuticas, pois pode resultar em biodisponibilidade insuficiente e variável. Diversas estratégias de modificação do estado sólido dos compostos ativos, têm sido propostas para incrementar a solubilidade de fármacos pouco solúveis em água. Dentre as estratégias abordadas a ispersão sólida (DS) é uma das formas mais promissoras de aumentar a solubilidade, dissolução e a biodisponibilidade de IFAs com baixa solubilidade aquosa. O efavirenz (EFV) é um inibidor não nucleosídeo da transcriptase reversa (NNRTI) e um dos componentes da terapia antirretroviral de alta atividade (HAART), sendo parte da primeira linha de tratamento de infecções do vírus HIV tipo 1. O antirretroviral está classificado como pertencente à classe II do SCB, e exibe baixa solubilidade aquosa (solubilidade menor que 10 µg/mL) e alta permeabilidade com absorção dependente da taxa de dissolução, resultando em biodisponibilidade oral baixa e variável. A administração de fármacos pouco solúveis na forma de DS é um método atraente para aumentar a biodisponibilidade in vivo. Neste estudo, um método de triagem rápida por evaporação de solvente foi empregado para preparar DS de EFV, variando-se proporções em misturas compostas pelos carreadores, polivinilpirrolidona K-28/32 (PVP K-28/32), copovidona (CoPVP), hidroxipropilmetilcelulose ftalato (HPMCP-50, HPMCP-55 e HPMCP-55s), poloxâmero 188 (P188) e poloxâmero 407 (P407). A solubilidade das DS foi avaliada por meio do método do equilíbrio (shake-flask), onde selecionou-se os polímeros P188 e P407 que conduziram a uma elevada capacidade de saturação em meio aquoso, superior a 1.000 vezes ao fármaco puro. As propriedades físico-químicas e do estado sólido das amostras foram avaliadas por meio de calorimetria exploratória diferencial (DSC); termogravimetria (TG); espectroscopia do infravermelho com transformada de Fourier (FTIR), difratometria de raios X pelo método do pó (DRXP) e ensaios de dissolução com emprego do aparato IV USP. Os resultados de DRXP demonstraram que os carreadores P188 e P407 foram capazes de estabilizar o EFV na forma amorfa nas DS, fato esse evidenciado pela ausência de picos característicos do antirretroviral


he low aqueous solubility of the active pharmaceutical ingredient (API) is a major challenge in the development of pharmaceutical formulations as it may result in insufficient and variable bioavailability. Several strategies for modifying the solid-state of the active compounds have been proposed to increase solubility of drugs that are poorly soluble in water. Among the strategies approaches, solid dispersion (SD) is one of the most promising ways to increase solubility, dissolution and bioavailability of APIs with low aqueous solubility. Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and one of the components of highly active antiretroviral therapy (HAART), being part of the first line of treatment of type 1 HIV virus infections. The antiretroviral is classified as belonging to BCS class II, and exhibits low aqueous solubility (solubility less than 10 µg / mL) and high permeability with dissolution ratedependent absorption, resulting in low and variable oral bioavailability. Drug delivery of poorly aqueous soluble drugs in form SD is an appealing method to increase in vivo bioavailability. In this study, a fast screening method of solvent evaporation method was used to prepare EFV SD, varying the proportions in mixtures composed by the carriers polyvinylpyrrolidone K-28/32 (PVP K-28/32), copovidone (CoPVP), hydroxypropylmethylcellulose phthalate (HPMCP-50, HPMCP-55 e HPMCP-55s), poloxamer 188 (P188) e poloxamer 407 (P407). The solubility of the samples was evaluated by the method of equilibrium (shake-flask), wherein the polymers P188 and P407 were selected due to the capacity to promote high saturation in aqueous medium, 1,000 times superior to the pure drug. The physicochemical and solid-state properties of the samples were evaluated by differential scanning calorimetry (DSC); thermogravimetry (TG); Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD) and dissolution assays using the IV USP apparatus. The results of XRPD demonstrated that the carriers P188 and P407 were able to stabilize the EFV in amorphous form in the SD, a fact evidenced by the absence of characteristic peaks of the antiretroviral


Assuntos
Preparações Farmacêuticas/administração & dosagem , Insumos Farmacêuticos , Dissolução , Análise Espectral/instrumentação , Varredura Diferencial de Calorimetria/métodos , DNA Polimerase Dirigida por RNA/efeitos adversos , Espectroscopia de Infravermelho com Transformada de Fourier , Poloxâmero/análogos & derivados , Terapia Antirretroviral de Alta Atividade/instrumentação , Derivados da Hipromelose/metabolismo , Análise de Fourier
14.
Braz. J. Pharm. Sci. (Online) ; 57: e18910, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1345454

RESUMO

Chemotherapy induced nausea and vomiting (CINV) is an issue, which usually occurs in cancer patient. Despite high bioavailability of oral and intravenous administration, these have some drawbacks. The oral route causes hepatic first pass metabolism and intravenous route is invasive in nature. Hence, antiemetic drug by means of transdermal route is necessary to administer in such cases. The aim of the present investigation is to develop suitable Transdermal Therapeutic System (TTS) with an objective to enhance solubility and skin permeability properties of metoclopramide base. Preformulation study begins with an approach to enhance solubility of 40 metoclopramide base by solid dispersion technique. transdermal films were prepared with 41 the solid dispersion as well as with pure drug. Phase solubility study at various temperatures reveals binding constants (Ka, 95-350 M-1 for PVP K30; 56-81 M-1 for HPßCD). Spontaneity of solubilization was justified by AL type linear profiles. The films showed satisfactory diffusion (%), permeation rate and flux after 8 h study. The transdermal patches as prepared were analyzed under FTIR, DSC and SEM. Both solubility and permeability rate in this investigation have been enhanced. So, it can be affirmed that this route would effectively enhance bioavailability


Assuntos
Solubilidade , Metoclopramida/antagonistas & inibidores , Pacientes/classificação , Preparações Farmacêuticas/administração & dosagem , Disponibilidade Biológica , Espectroscopia de Infravermelho com Transformada de Fourier , Difusão/efeitos dos fármacos , Tratamento Farmacológico , Administração Intravenosa/instrumentação , Filmes Cinematográficos , Neoplasias/patologia
15.
Chinese Herbal Medicines ; (4): 534-540, 2021.
Artigo em Chinês | WPRIM | ID: wpr-953622

RESUMO

Objective: The present study aimed to evaluate the effect of a high water-soluble curcuminoids-rich extract (CRE) in a solid dispersion form (CRE-SD) using polyvinylpyrrolidone K30 on osteogenic induction of MC3T3-E1 cells. Methods: CRE was pre-purified using a microwave assisted extraction couple with a Diaion® HP-20 column chromatography. The osteoblastic cell proliferation and differentiation potentials of CRE-SD in MC3T3-E1 cells were tested by cell viability, alkaline phosphatase (ALP) activity, and Alizarin red S activity assays. The mRNA expressions of osteoblast-specific genes and underline mechanisms were assessed by a real time PCR and western blot analysis. Results: CRE-SD 50 µg/mL increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts in both MC3T3-E1 cells and non-osteogenic mouse pluripotent cell line, C3H10T1/2, indicating the action of CRE-SD was not cell-type specific. Alizarin red S activity showed a significant amount of calcium deposition in cells treated with CRE-SD. CRE-SD also upregulated the mRNA expression levels of transcription factors that favor osteoblast differentiation including Bmp-2, Runx2 and Collagen 1a, in a dose dependent manner. Western blot analysis revealed that noggin attenuated CRE-SD-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt/β-catenin signaling pathway also annulled the influence of CRE-SD, indicating Wnt/β-catenin dependent activity. Inhibition of the different signaling pathways abolished the influence of CRE-SD on ALP activity, confirming that CRE-SD induced MC3T3-E1 cells into osteoblasts through Wnt/β-catenin and BMP signaling pathway. Conclusion: These results collectively demonstrate that CRE-SD may be a potential therapeutic agent for the treatment of osteoporosis.

16.
Artigo | IMSEAR | ID: sea-206335

RESUMO

The present research is aimed at enhancing solubility and drug dissolution of clopidogrel (CPG) used as oral antiplatelet agent by employing solid dispersion (SD) technique. Total 40 SDs formulated with drug: polymers (pluronic F127, poloxamer 407, labrafil PG, PEG 6000, gelucire 50/13), in varying ratios (1:0.5, 1:1, 1:2, 1:3, 1:4) of which CPG1 to CPG20 and CPG21 to CPG40 prepared by adopting solvent evaporation method fusion (melt) method respectively. The formulation CPG40 containing pluronic F127 as polymer showed highest solubility of 6.57±0.04 mg/ml) that is 45 folds than pure drug. Similar results reflected in the dissolution studies where CPG40 containing CPG: pluronic F127 in 1:4 ratio showed maximum % drug content, % practical yield and drug dissolution of 99.14% in 60 minutes when compared with other formulations and pure drug (32.76%) obtained by fusion melt method. From FTIR studies the optimized formulation CPG40 showed the compatibility between drug and polymers. XRD and SEM studies showed CPG40 exists in amorphous form that fetched in better drug release from the SD formulation in comparison to pure drug.

17.
Artigo | IMSEAR | ID: sea-210604

RESUMO

Diacerein (Diacetylrhein, DCN) is anthraquinone derivatives used in the curing of osteoarthritis, but its usage isrestricted due to its very poor solubility and wettability which result in bioavailability variation. The objective ofthis work was to design fast dissolving tablets (FDTs) of DCN solid dispersion. Solid dispersions (SDs) and physicalmixtures (PMs) were prepared with PEG4000, Polyvinylpyrolidone K25 (PVPK25), and Sorbitol. SD formationincreased the dissolution rate of DCN compared to PM; this demonstrates that the improvement of dissolution ratewith SD can be due to physical change in drug crystal which was confirmed by thermal analysis. SD with Sorbitol wasselected for the preparations of FDTs. Seven formulations were prepared by direct compression method using differentconcentrations of crospovidone (CP) as superdisintegrant and camphor as subliming agent. Pre- and post-compressionevaluation were carried for powder blend and the prepared FDTs, respectively. F7 (composed of 120 mg CP, 45 mgcamphor, 200 mg SD containing 50 mg DCN, 7.5 mg aspartame, 2.5 mg menthol, 2.5 mg Magnesium stearate, and22.5 mg lactose) showed the shortest disintegration time and the highest dissolution rate and it was selected for furtherinvestigation. Kinetic studies of the in vitro release results showed that F7 followed first-order kinetics. Stabilitystudies conducted for formula F7 showed good stability upon storage at 30oC/75% RH and 40oC/75% RH for 12 weeks.

18.
Int J Pharm Pharm Sci ; 2020 Apr; 12(4): 37-42
Artigo | IMSEAR | ID: sea-206079

RESUMO

Objective: The present study aimed to improve the rate of dissolution of furosemide by solid dispersion technique. Methods: Solid dispersion of furosemide was prepared by using hydrogel isolated from the seeds of Lepidium sativum as a novel carrier by the solvent evaporation method. Solid dispersion was evaluated to study the improvement in the rate of dissolution. Molecular dispersion of furosemide in the novel carrier was studied by DSC and FTIR studies. Solid dispersion was filled in capsules after stability studies and the formulation was optimized by adopting factorial design. Results: Solid dispersion of furosemide exhibited dissolution improvement from 13.54 % (plain furosemide) to 69.12% (solid dispersion) in the first 60 min. Improvement in dissolution efficiency was found to be retained after stability studies. Capsules were filled with the formulation of solid dispersion using two different grades of lactose-α lactose monohydrate and anhydrous lactose and were found stable after stabilization studies. Conclusion: The dissolution improvement of furosemide was attributed to its molecular dispersion in the novel carrier selected for this study. The recrystallization of furosemide was prevented due to intermolecular interaction between the novel carrier and furosemide. This was confirmed by FTIR. Evaluation of the dissolution data of factorial batches was analyzed by ANOVA. Analysis of the data revealed that selected levels of α lactose monohydrate and anhydrous lactose would be useful to navigate design space.

19.
Journal of Pharmaceutical Practice ; (6): 441-446, 2020.
Artigo em Chinês | WPRIM | ID: wpr-825622

RESUMO

Objective To evaluate the effects of different solubilizing techniques on the in vitro dissolution and in vivo pharmacokinetics of Sirolimus (SRL). Methods Solid dispersions (SD), inclusion complex (IC), self-micro emulsifying drug delivery system (SMEDDS) and nano-structured lipid carrier (NLC) were selected as the solubilization technology for SRL. SRL-SMEDDS and SRL-NLC have obtained the optimal prescription in the previous studies. Additionally, the formulation process of SRL-SD and SRL-IC was screened by using inclusion rate and dissolution profiles as indicators. 0.4% SDS, water and buffer solutions with pH 1.2, 4.5, 6.8, 7.4 were used as dissolution media. The dissolution profile of the commercially available formulation Rapamune® and the lab-made solubilized preparations were investigated. The in vivo absorption of the above preparations was examined using a pharmacokinetic test in Beagle dogs. Results In 0.4% SDS, the dissolution of each preparation exceeded 80% in 2 h. In the medium of pH 1.2, the dissolution of SRL-SD could not be measured while the dissolution of IC, SMEDDS and NLC increased first and then decreased. In other media, the dissolution of the SRL was reduced. The SRL-IC showed the best dissolution without a significant decrease. The relative bioavailability of APIs, SRL-SD, SRL-IC, SRL-NLC and SRL-SMEDDS were 9.1%, 18.7%, 33.2%, 78.0%, and 97.6% respectively in vivo pharmacokinetic tests. Conclusion SD, SMEDDS, NLC, and IC can improve the in vitro dissolution and in vivo absorption of SRL. Among them, SMEDDS has the most significant improvement in the bioavailability of SRL.

20.
China Pharmacy ; (12): 1054-1061, 2020.
Artigo em Chinês | WPRIM | ID: wpr-821493

RESUMO

OBJECTIVE:To prepare Cheler ythrine (CHE) solid dispe rsion (SD),optimize the formulation technology , characterize its preparation and investigate its in vitro antioxidant activity. METHODS :The content of CHE in SD was determined by UV spectrophotometry. Based on single factor tests ,using the product yield as index ,using preparation method ,carrier material type,carrier material proportion (drug-carrier material mass ratio )as factors ,the formulation technology of SD was optimized by L(9 34)orthogonal test and validated. Based on solubility and accumulative dissolution determination ,the product was characterized with thermal analyssis ,X-ray diffraction and scanning electron microscope. Using ascorbic acid as positive control ,in vitro antioxidant activity of the product was determined by DPPH method. RESULTS :The linear range of CHE was 2.4-5.6 μg/mL; quantitation limit and detection limit were 0.066 9,0.022 1 μg/mL;RSDs of precision ,stability and reproducibility tests were all lower than 2%;recoveries were 97.50%-99.25%(RSD<1%, n=3). The optimal preparation technology included using PEG 6000 as carrier material ,carrier material ratio of 1 ∶ 3, prepared by solvent method. Three batches of CHE-PEG-SD were prepared. Verification test results showed that the 话:0539-80311889。E-mail:zhenshengao@163.com accumulative dissolution of CHE-PEG-SD was (61.72 ± 0.67)% at 15 min,and the yield was (99.04±0.83)%. The results of characterization showed that after CHE-PEG-SD prepared , its solubility (3.725 mg/mL)and accumulative dissolution (61.25%,15 min)were higher than CHE raw material [ 0.098 mg/mL, 6.24%(180 min)]. The endothermic peak and crystal absorption peak moved or even disappeared compared with raw material and the carrier material ,and CHE was uniformly dispersed in the carrier material as an amorphous state. Results of in vitro antioxidation test showed that different concentration of CHE-PEG-SD showed certain ability of DPPH free radical scavenging ,and the IC 50 was 0.124 mg/mL,higher than 0.041 mg/mL of ascorbic acid. CONCLUSIONS :Established content determination method is simple and accurate. The optimal SD formulation technology is stable and feasible. The solubility of prepared CHE-PEG-SD increases,and the dissolution in vitro increases,showing certain in vitro oxidation resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA