Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 126-133, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006277

RESUMO

ObjectiveTo prepare oral nanoemulsions encapsulating essential oil from Alpinia zerumbet fructus(EOFAZ) and to investigate its pro-absorption effect in vitro and distribution in vivo. MethodThe proteoglycan conjugate polysaccharides of vinegar-processed Bupleuri Radix-bovine serum albumin(VBCP-BSA) was prepared by Maillard reaction of VBCP and BSA. Taking VBCP-BSA as emulsifier, vitamin B12(VB12) as absorption enhancer, and medium chain triglycerides mixed with EOFAZ as oil phase, the nanoemulsions loaded with EOFAZ was prepared by high energy emulsification method. The particle size, particle size distribution, surface Zeta potential, EOFAZ content and appearance and morphology of the nanoemulsions were characterized, and fluorescein tracer method was used to investigate the absorption effect of fluorescein-labeled EOFAZ nanoemulsions in vitro and their distribution in vivo. ResultVBCP-BSA was formed by Maillard reaction for 48 h with high grafting rate. Using VBCP-BSA as emulsifier, the homogeneous pink nanoemulsions was prepared and denoted as EOFAZ@VBCP-BSA/VB12. The particle size of the nanoemulsions was less than 100 nm and the particle size distribution was uniform. The surface of the nanoemulsions was a weak negative charge, and the shape was spherical. The encapsulation rate of the nanoemulsions for EOFAZ was greater than 80%, which had a good absorption effect in vitro and could enhance liver accumulation after oral administration. ConclusionThe designed proteoglycan nanoemulsions can effectively load EOFAZ, promote oral absorption and enhance liver distribution, which can provide experimental basis for the development of oral EOFAZ liver protection preparations.

2.
Acta Pharmaceutica Sinica B ; (6): 579-601, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011271

RESUMO

Lipid nanovehicles are currently the most advanced vehicles used for RNA delivery, as demonstrated by the approval of patisiran for amyloidosis therapy in 2018. To illuminate the unique superiority of lipid nanovehicles in RNA delivery, in this review, we first introduce various RNA therapeutics, describe systemic delivery barriers, and explain the lipid components and methods used for lipid nanovehicle preparation. Then, we emphasize crucial advances in lipid nanovehicle design for overcoming barriers to systemic RNA delivery. Finally, the current status and challenges of lipid nanovehicle-based RNA therapeutics in clinical applications are also discussed. Our objective is to provide a comprehensive overview showing how to utilize lipid nanovehicles to overcome multiple barriers to systemic RNA delivery, inspiring the development of more high-performance RNA lipid nanovesicles in the future.

3.
Acta Pharmaceutica Sinica B ; (6): 808-820, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011268

RESUMO

Folic acid is a fully oxidized synthetic folate with high bioavailability and stability which has been extensively prescribed to prevent congenital disabilities. Here we revealed the immunosuppressive effect of folic acid by targeting splenic marginal zone B (MZB) cells. Folic acid demonstrates avid binding with the Fc domain of immunoglobulin M (IgM), targeting IgM positive MZB cells in vivo to destabilize IgM-B cell receptor (BCR) complex and block immune responses. The induced anergy of MZB cells by folic acid provides an immunological escaping window for antigens. Covalent conjugation of folic acid with therapeutic proteins and antibodies induces immunological evasion to mitigate the production of anti-drug antibodies, which is a major obstacle to the long-term treatment of biologics by reducing curative effects and/or causing adverse reactions. Folic acid acts as a safe and effective immunosuppressant via IgM-mediated MZB cells targeting to boost the clinical outcomes of biologics by inhibiting the production of anti-drug antibodies, and also holds the potential to treat other indications that adverse immune responses need to be transiently shut off.

4.
Acta Pharmaceutica Sinica B ; (6): 365-377, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011249

RESUMO

Chemotherapy is one of the major approaches for the treatment of metastatic lung cancer, although it is limited by the low tumor delivery efficacy of anticancer drugs. Bacterial therapy is emerging for cancer treatment due to its high immune stimulation effect; however, excessively generated immunogenicity will cause serious inflammatory response syndrome. Here, we prepared cancer cell membrane-coated liposomal paclitaxel-loaded bacterial ghosts (LP@BG@CCM) by layer-by-layer encapsulation for the treatment of metastatic lung cancer. The preparation processes were simple, only involving film formation, electroporation, and pore extrusion. LP@BG@CCM owned much higher 4T1 cancer cell toxicity than LP@BG due to its faster fusion with cancer cells. In the 4T1 breast cancer metastatic lung cancer mouse models, the remarkably higher lung targeting of intravenously injected LP@BG@CCM was observed with the almost normalized lung appearance, the reduced lung weight, the clear lung tissue structure, and the enhanced cancer cell apoptosis compared to its precursors. Moreover, several major immune factors were improved after administration of LP@BG@CCM, including the CD4+/CD8a+ T cells in the spleen and the TNF-α, IFN-γ, and IL-4 in the lung. LP@BG@CCM exhibits the optimal synergistic chemo-immunotherapy, which is a promising medication for the treatment of metastatic lung cancer.

5.
Cancer Research on Prevention and Treatment ; (12): 202-208, 2023.
Artigo em Chinês | WPRIM | ID: wpr-986704

RESUMO

The uPA-uPAR system is highly expressed in various tumor tissues. This system can promote the degradation of extracellular matrix proteins, as well as combine with vitronectin and integrin to transmit intracellular signal transduction. Subsequently, it mediates the occurrence and development of tumors. In recent years, a series of therapeutic programs that target this system has achieved notable results in tumor treatment, and some of them have been under the clinical trial stage, thus providing new ideas for tumor targeted therapy. Therefore, this paper intends to provide a review of research progress on the gene therapy, drug therapy, and immunotherapy targeting uPA-uPAR system.

6.
Acta Pharmaceutica Sinica B ; (6): 2334-2345, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982874

RESUMO

Mucosal vaccines that stimulate both mucosal and systemic immune responses are desirable, as they could prevent the invading pathogens at their initial infection sites in a convenient and user-friendly way. Nanovaccines are receiving increasing attention for mucosal vaccination due to their merits in overcoming mucosal immune barriers and in enhancing immunogenicity of the encapsulated antigens. Herein, we summarized several nanovaccine strategies that have been reported for enhancing mucosal immune responses, including designing nanovaccines that have superior mucoadhesion and mucus penetration capacity, designing nanovaccines with better targeting efficiency to M cells or antigen-presenting cells, and co-delivering adjuvants by using nanovaccines. The reported applications of mucosal nanovaccines were also briefly discussed, including prevention of infectious diseases, and treatment of tumors and autoimmune diseases. Future research progresses in mucosal nanovaccines may promote the clinical translation and application of mucosal vaccines.

7.
Acta Pharmaceutica Sinica B ; (6): 2715-2735, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982857

RESUMO

Various c-mesenchymal-to-epithelial transition (c-MET) inhibitors are effective in the treatment of non-small cell lung cancer; however, the inevitable drug resistance remains a challenge, limiting their clinical efficacy. Therefore, novel strategies targeting c-MET are urgently required. Herein, through rational structure optimization, we obtained novel exceptionally potent and orally active c-MET proteolysis targeting chimeras (PROTACs) namely D10 and D15 based on thalidomide and tepotinib. D10 and D15 inhibited cell growth with low nanomolar IC50 values and achieved picomolar DC50 values and >99% of maximum degradation (Dmax) in EBC-1 and Hs746T cells. Mechanistically, D10 and D15 dramatically induced cell apoptosis, G1 cell cycle arrest and inhibited cell migration and invasion. Notably, intraperitoneal administration of D10 and D15 significantly inhibited tumor growth in the EBC-1 xenograft model and oral administration of D15 induced approximately complete tumor suppression in the Hs746T xenograft model with well-tolerated dose-schedules. Furthermore, D10 and D15 exerted significant anti-tumor effect in cells with c-METY1230H and c-METD1228N mutations, which are resistant to tepotinib in clinic. These findings demonstrated that D10 and D15 could serve as candidates for the treatment of tumors with MET alterations.

8.
Acta Pharmaceutica Sinica B ; (6): 2176-2187, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982833

RESUMO

Intelligent responsive drug delivery system opens up new avenues for realizing safer and more effective combination immunotherapy. Herein, a kind of tumor cascade-targeted responsive liposome (NLG919@Lip-pep1) is developed by conjugating polypeptide inhibitor of PD-1 signal pathway (AUNP-12), which is also a targeted peptide that conjugated with liposome carrier through matrix metalloproteinase-2 (MMP-2) cleavable peptide (GPLGVRGD). This targeted liposome is prepared through a mature preparation process, and indoleamine-2,3-dioxygenase (IDO) inhibitor NLG919 was encapsulated into it. Moreover, mediated by the enhanced permeability and retention effect (EPR effect) and AUNP-12, NLG919@Lip-pep1 first targets the cells that highly express PD-L1 in tumor tissues. At the same time, the over-expressed MMP-2 in the tumor site triggers the dissociation of AUNP-12, thus realizing the precise block of PD-1 signal pathway, and restoring the activity of T cells. The exposure of secondary targeting module II VRGDC-NLG919@Lip mediated tumor cells targeting, and further relieved the immunosuppressive microenvironment. Overall, this study offers a potentially appealing paradigm of a high efficiency, low toxicity, and simple intelligent responsive drug delivery system for targeted drug delivery in breast cancer, which can effectively rescue and activate the body's anti-tumor immune response and furthermore achieve effective treatment of metastatic breast cancer.

9.
Acta Pharmaceutica Sinica B ; (6): 1740-1754, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982796

RESUMO

Cancer immunotherapy has become a promising strategy. However, the effectiveness of immunotherapy is restricted in "cold tumors" characterized with insufficient T cells intratumoral infiltration and failed T cells priming. Herein, an on-demand integrated nano-engager (JOT-Lip) was developed to convert cold tumors to hot via "increased DNA damage and dual immune checkpoint inhibition" strategy. JOT-Lip was engineered by co-loading oxaliplatin (Oxa) and JQ1 into liposomes with T-cell immunoglobulin mucin-3 antibodies (Tim-3 mAb) coupled on the liposomal surface by metalloproteinase-2 (MMP-2)-sensitive linker. JQ1 inhibited DNA repair to increase DNA damage and immunogenic cell death (ICD) of Oxa, thus promoting T cells intratumoral infiltration. In addition, JQ1 inhibited PD-1/PD-L1 pathway, achieving dual immune checkpoint inhibition combining with Tim-3 mAb, thus effectively promoting T cells priming. It is demonstrated that JOT-Lip not only increased DNA damage and promoted the release of damage-associated molecular patterns (DAMPs), but also enhanced T cells intratumoral infiltration and promoted T cell priming, which successfully converted cold tumors to hot and showed significant anti-tumor and anti-metastasis effects. Collectively, our study provides a rational design of an effective combination regimen and an ideal co-delivery system to convert cold tumors to hot, which holds great potential in clinical cancer chemoimmunotherapy.

10.
Journal of Zhejiang University. Medical sciences ; (6): 349-360, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982052

RESUMO

Vesicles derived from Chinese medicinal herbs (VCMH) are nano-vesicular entities released by the cells of Chinese medicinal herbs. VCMHs have various biological effects and targeting characteristics, and their component chemicals and functional activities are closely related to the parent plant. VCMH differs from animal-derived vesicles in three ways: stability, specificity, and safety. There are a number of extraction and isolation techniques for VCMH, each with their own benefits and drawbacks, and there is no unified standard. When two or more approaches are used, high quantities of intact vesicles can be obtained more quickly and efficiently. The obtained VCMHs were systematically examined and evaluated. Firstly, they are generally saucer-shaped, cup-shaped or sphere, with particle size of 10-300 nm. Secondly, they contain lipids, proteins, nucleic acids and other active substances, and these components are an important part for intercellular information transfer. Finally, they mostly have good biocompatibility and low toxicity, with anti-inflammatory, antioxidant, anti-tumor and anti-fibrotic effects. As a new drug carrier, VCMHs have outstanding active targeting capabilities, and the capsule form can effectively preserve the drugs, considerably enhancing drug delivery efficiency and stability in vitro and in vivo. The modification of its vesicular structure by suitable physical or chemical means can further create more stable and precise drug carriers. This article reviews the extraction and purification techniques, activity evaluation and application of VCMH to provide information for further research and application of new active substances and targeted drug carriers.


Assuntos
Animais , Medicamentos de Ervas Chinesas/química , Plantas Medicinais , Antioxidantes , Anti-Inflamatórios , Portadores de Fármacos
11.
Acta Pharmaceutica Sinica ; (12): 2193-2202, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999149

RESUMO

Proteolysis targeting chimeras (PROTACs) is an innovative technique in targeted protein degradation. PROTACs is a heterobifunctional molecule which can bind to the E3 ligase and target protein to form a ubiquitination complex, resulting in the ubiquitin-proteasome system dependent degradation of target protein. PROTACs has been regarded as the promising method in drug discovery campaign, for its high commonality, potent degradation activity and unique selectivity profile. However, the catalytic mechanism also induces the uncontrollable protein degradation risk. Controllable PROTACs contain the responsive element in the molecular entity. In certain conditions, the element can be triggered to activate or terminate the degradation event. In this review, we will briefly summarize the strategies in controllable PROTACs and describe the representative examples according to the responsive mechanism. We hope this review could provide some insight into the further development of controllable PROTACs.

12.
Acta Pharmaceutica Sinica ; (12): 2341-2352, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999107

RESUMO

Cancer is still one of the major diseases threatening human life and health. At present, how to achieve precise diagnosis and treatment of tumors is the biggest challenge in cancer treatment. Prodrugs use the tumor specificity of targeting molecules to deliver anticancer drugs to tumor sites, which can effectively improve drug bioavailability, therapeutic efficacy and safety, and are currently a hot spot in the research and development of anticancer drugs. The targeting molecules of prodrugs mainly include nucleic acid aptamers, polymers, antibodies, polypeptides, etc. Among them, polypeptides have the advantages of good biocompatibility, controllable degradation performance, high in vivo responsiveness, and simple and easy preparation methods, and are widely used. It is used to construct peptide-drug conjugates (PDC) prodrugs to achieve targeted therapy of tumors. In recent years, with the development of phage peptide library technology and peptide standard solid-phase synthesis technology, more and more targeted peptides have been discovered and effectively synthesized and modified, providing strong support for the development of PDC. This review briefly introduces the types and functions of functional peptides and linkers in PDC, and discusses the application of PDC in chemotherapy, immunotherapy and photodynamic therapy in tumor targeted diagnosis and treatment, and finally summarizes the difficulties faced by PDC drug development.

13.
Cancer Research and Clinic ; (6): 637-640, 2023.
Artigo em Chinês | WPRIM | ID: wpr-996287

RESUMO

Although it is widely believed that abnormal energy metabolism exists in cancer cells and affects the biological behavior of cancers, the exact mechanism of energy metabolic reprogramming and specific mechanism of its effect on proliferation, invasion and metastasis of cancer cells have not been clarified. In recent years, studies have shown that long non-coding RNA (lncRNA) can affect energy metabolism, development and progression of cancer cells through binding to specific nucleic acids and proteins at the transcriptional and post-transcriptional stages, and specifically through transcriptional interference, epigenetic regulation of genes, changes in protein activity, competitive binding to microRNA (miRNA) and other related mechanisms. The further study on the mechanism of lncRNA regulating energy metabolism reprogramming of cancer cells is expected to find new markers and targets for diagnosis and treatment of cancer. This paper reviews the current research progress of the mechanism of lncRNA regulating metabolic reprogramming of glucose, fatty acid, protein and nucleotide in cancer, and provides a new idea of lncRNA's regulation of energy metabolism pathways for targeted anticancer therapy.

14.
Journal of International Oncology ; (12): 368-372, 2023.
Artigo em Chinês | WPRIM | ID: wpr-989573

RESUMO

Small cell lung cancer (SCLC) is a rapidly developing malignant tumor, which is highly heterogeneous and prone to drug resistance, and the prognosis is usually poor. Poly ADP-ribose polymerase (PARP) inhibitors target the DNA damage response pathway, preventing DNA repair, thereby exerting anti-tumor effects. Currently, PARP inhibitors are used as monotherapy or in combination with DNA-damaging agents or immune checkpoint inhibitors in the treatment of SCLC. Although the current research results are limited, it can be seen that PARP inhibitors may be a breakthrough in the targeted therapy of SCLC.

15.
Journal of Leukemia & Lymphoma ; (12): 143-146, 2023.
Artigo em Chinês | WPRIM | ID: wpr-988964

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of aggressive lymphoma. The relapsed/refractory DLBCL patients have poor outcomes and DLBCL is still lack of effective treatment standard regimens. How to effectively treat relapsed/refractory DLBCL patients has become a research hotspot, and the current treatment methods include bispecific antibody therapy, chimeric antigen receptor T-cell (CAR-T) therapy, antibody-drug conjugates (ADC) therapy. This paper reviews the progress of targeted drugs/cell treatment for DLBCL at the 64th American Society of Hematology annual meeting.

16.
Journal of China Pharmaceutical University ; (6): 431-442, 2023.
Artigo em Chinês | WPRIM | ID: wpr-987663

RESUMO

@#Self-assembly is the basis of the formation of biological macromolecular structure. Enzyme-instructed self-assembly (EISA) with the help of tool enzymes, realizing the conversion of small molecular compounds to supramolecular nanostructures at specific sites, become a new strategy for drug discovery.In recent years, the exploration of EISA for developing malignant cancer therapy and imaging has made considerable progress, achieving the precise regulation and tumor targeting of nanostructures. This paper reviews the latest progress of EISA in the field of tumor diagnosis and treatment, the functions and characteristics of tool enzymes such as alkaline phosphatase, sirtuin, tyrosinase, γ-glutamyltranspeptidase and caspase-3,summarizes the research status of EISA targeting multiple organelles in tumor therapy, and introduces the application of EISA in tumor imaging, aiming to provide reference forthe research of EISA strategy in tumor diagnosis and treatment.

17.
Chinese Journal of Biotechnology ; (12): 4397-4412, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008032

RESUMO

Monoacylglycerol lipase (MGL) is a serine hydrolase that plays a major role in the degradation of endogenous cannabinoid 2-arachidonoylglycerol. The role of MGL in some cancer cells has been confirmed, where inhibition of the MGL activity shows inhibition on cell proliferation. This makes MGL a promising drug target for the treatment of cancer. Recently, the development of covalent inhibitors of MGL has developed rapidly. These drugs have strong covalent binding ability, high affinity, long duration, low dose and low risk of drug resistance, so they have received increasing attention. This article introduces the structure and function of MGL, the characteristics, mechanisms and progress of covalent MGL inhibitors, providing reference for the development of novel covalent small molecule inhibitors of MGL.


Assuntos
Monoacilglicerol Lipases/metabolismo , Endocanabinoides/metabolismo
18.
Chinese Journal of Biotechnology ; (12): 3628-3643, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1007982

RESUMO

Small-molecule anticancer drugs inhibited tumor growth based on targeted inhibition of specific proteins, while most of oncogenic proteins are "undruggable". Proteolysis targeting chimeras (PROTAC) is an attractive and general strategy for treating cancer based on targeted degradation of oncogenic proteins. This review briefly describes the peptide-based PTOTAC and small molecule-based PROTAC. Subsequently, we summarize the development of targeted delivery of PROTAC, such as targeting molecule-mediated targeted delivery of PROTAC, nanomaterial-mediated targeted delivery of PROTAC and controllable activation of small-molecular PROTAC prodrug. Such strategies show potential application in improving tumor selectivity, overcoming off-target effect and reducing biotoxicity. At the end, the druggability of PROTAC is prospected.


Assuntos
Humanos , Quimera de Direcionamento de Proteólise , Nanoestruturas , Neoplasias/tratamento farmacológico , Proteólise
19.
Chinese Journal of Biotechnology ; (12): 3615-3627, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1007981

RESUMO

Proteolysis targeting chimera (PROTAC) refers to heterobifunctional small molecules that can simultaneously bind an E3 ubiquitin ligase and a target protein, enabling specific degradation of the target protein with the aid of the ubiquitin proteasome system. At present, most PROTAC drugs are in the clinical trial stage, and the ligands are mainly non-covalent compounds. PROTAC drugs have the advantage of overcoming drug resistance and degrading "undruggable" target proteins, but non-covalent ligands could lead to the hook effect that undermines drug efficacy. With its own advantages, covalent ligands can avoid the occurrence of this phenomenon, which is of great help to the development of PROTAC. This review summarizes the progress in preclinical and clinical research and application of PROTAC molecules targeting three different classes of protein targets, including intranuclear, transmembrane, and cytosolic proteins. We also offer perspective discussions to provide research ideas and references for the future development of PROTAC.


Assuntos
Proteólise , Quimera de Direcionamento de Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Ligantes
20.
Acta Pharmaceutica Sinica ; (12): 3477-3489, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1004650

RESUMO

Radiopharmaceutical is an essential component of nuclear medicine and molecular imaging, as well as a key component of precision medicine. The United States Food and Drug Administration (FDA) has recently approved the marketing of several peptide-based radiopharmaceuticals, sparking a global trend of research in this area and propelling nuclear medicine into the precision theranostic era. This has created a new wave of technological competition in the field of nuclear medicine. It is the responsibility of Chinese scientists in the radiopharmaceutical field to capitalize on this opportunity, leverage the momentum, and strengthen their independent innovation capability in order to stay ahead in the future global nuclear science and technology competition. This review provides an overview of the remarkable progress made in the research, development, and translation of global peptide-based radiopharmaceuticals. It examines the advantages of peptide-based radiopharmaceuticals and outlines the current hot targets and progress in drug development in this field. Additionally, it proposes six opportunities for China to overtake others in the field of peptide-based radiopharmaceuticals and achieve technological self-reliance, based on interdisciplinary collaboration and independent innovation. Lastly, the future prospect of peptide-based radiopharmaceuticals is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA