Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Journal of Biomedical Engineering ; (6): 320-328, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928228

RESUMO

Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.


Assuntos
Humanos , Algoritmos , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
2.
Journal of Biomedical Engineering ; (6): 763-768, 2019.
Artigo em Chinês | WPRIM | ID: wpr-774144

RESUMO

Focus on the inconsistency of the shape, location and size of brain glioma, a dual-channel 3-dimensional (3D) densely connected network is proposed to automatically segment brain glioma tumor on magnetic resonance images. Our method is based on a 3D convolutional neural network frame, and two convolution kernel sizes are adopted in each channel to extract multi-scale features in different scales of receptive fields. Then we construct two densely connected blocks in each pathway for feature learning and transmission. Finally, the concatenation of two pathway features was sent to classification layer to classify central region voxels to segment brain tumor automatically. We train and test our model on open brain tumor segmentation challenge dataset, and we also compared our results with other models. Experimental results show that our algorithm can segment different tumor lesions more accurately. It has important application value in the clinical diagnosis and treatment of brain tumor diseases.


Assuntos
Humanos , Neoplasias Encefálicas , Diagnóstico por Imagem , Glioma , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA