Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Korean Neurosurgical Society ; : 1-7, 2013.
Artigo em Inglês | WPRIM | ID: wpr-63159

RESUMO

OBJECTIVE: This study was undertaken in the belief that the atypical antipsychotic drug quetiapine could prevent apoptosis in the penumbra region following ischemia, taking into account findings that show 5-hydroxytryptamine-2 receptor blockers can prevent apoptosis. METHODS: We created 5 groups, each containing 6 animals. Nothing was done on the K-I group used for comparisons with the other groups to make sure adequate ischemia had been achieved. The K-II group was sacrificed on the 1st day after transient focal cerebral ischemia and the K-III group on the 3rd day. The D-I group was administered quetiapine following ischemia and sacrificed on the 1st day while the D-II group was administered quetiapine every day following the ischemia and sacrificed on the 3rd day. The samples were stained with the immunochemical TUNEL method and the number of apoptotic cells were counted. RESULTS: There was a significant difference between the first and third day control groups (K-II/K-III : p=0.004) and this indicates that apoptotic cell death increases with time. This increase was not encountered in the drug groups (D-I/D-II : p=1.00). Statistical analysis of immunohistochemical data revealed that quetiapine decreased the apoptotic cell death that normally increased with time. CONCLUSION: Quetiapine is already in clinical use and is a safe drug, in contrast to many substances that are used to prevent ischemia and are not normally used clinically. Our results and the literature data indicate that quetiapine could help both as a neuronal protector and to resolve neuropsychiatric problems caused by the ischemia in cerebral ischemia cases.


Assuntos
Animais , Ratos , Apoptose , Isquemia Encefálica , Morte Celular , Dibenzotiazepinas , Marcação In Situ das Extremidades Cortadas , Isquemia , Neurônios , Fármacos Neuroprotetores , Fumarato de Quetiapina
2.
Journal of the Korean Neurological Association ; : 535-543, 2007.
Artigo em Coreano | WPRIM | ID: wpr-158629

RESUMO

BACKGROUND: Reactive Oxygen Species (ROS) have been implicated in the pathophysiology of brain injury after ischemia/reperfusion. Recently, it has been reported that endonuclease G (EndoG), a mitochondrial protein, is activated by neuronal excitotoxicity and translocated into nucleus inducing apoptosis. However, it is not elucidated whether ROS are involved in the nuclear translocation of EndoG in focal cerebral ischemia/reperfusion in mice. We investigated whether treatment of manganese tetrakis (4-benzoic acid) porphyrin (MnTBAP) protects against early nuclear translocation of EndoG and reduces cerebral infarction after ischemia/reperfusion in mice METHODS: Adult male mice were subjected to middle cerebral artery occlusion (MCAO) for 60 min, followed by reperfusion. Immunohistochemistry and Western blot analysis for EndoG were performed at various time points after ischemia/reperfusion. Double staining with EndoG and Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labeling (TUNEL) was also performed. MnTBAP was used to determine whether the production of ROS could inhibit translocation of EndoG into the nucleus. RESULTS: Western blot analysis and Immunohistochemistry of EndoG showed that nuclear EndoG was detected as early as 4 hrs after reperfusion, and mitochondrial EndoG was significantly reduced at the same time. Double staining with EndoG and TUNEL showed a spatial relationship between EndoG expression and DNA fragmentation. MnTBAP-treated mice showed that the translocation of EndoG was attenuated in comparison with the vehicle- treated mice and decreased infarction volume after ischemia/reperfusion. CONCLUSIONS: MnTBAP reduced the generation of ROS, and inhibited the early translocation of EndoG, which was followed by the reduction of infarction volume in the ischemic brain after ischemia/reperfusion.


Assuntos
Adulto , Animais , Humanos , Masculino , Camundongos , Apoptose , Western Blotting , Encéfalo , Lesões Encefálicas , Infarto Cerebral , Fragmentação do DNA , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Infarto , Infarto da Artéria Cerebral Média , Manganês , Proteínas Mitocondriais , Neurônios , Espécies Reativas de Oxigênio , Reperfusão , Uridina Trifosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA