Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Pharmacological Bulletin ; (12): 1582-1589, 2019.
Artigo em Chinês | WPRIM | ID: wpr-857106

RESUMO

; Aim To culture primary human gastric cancer associated fibroblasts (CAFs) and normal fibroblasts (NFs), and to explore the biological characteristics and their effects on gastric cancer cells. Methods After isolation and culture of CAFs and NFs, growth curve was drawn by MTT. The a-smooth muscle actin (ot-SMA) and Vimentin were detected by Immunofluorescence, Western blot and qRT-PCR. MGC-803 cells were co-cultured with CAFs and NFs in Transwell suspension mode. The migration and invasion ability of gastric cancer cells was detected by Transwell. The proliferation activity and AMD3100 on CAFs-gastric cancer co-culture system were compared by MTT. The acidic property, lactic acid and ROS contents of co-culture system were determined by PH meter, lactic acid and DCFH-DA method. Results The morphology of CAFs, NFs cells were in long spindle or flat star shape. The proliferation ability and overlapping growth phenomenon of CAFs were higher than those of NFs. The expression of ct-SMA and Vimentin cells was positive in CAFs, but low or negative in NFs cells. The activity of gastric cancer in low density co-culture group > medium density group > high density group, the PH value of CAFs co-culture system decreased, the content of lactic acid and ROS was high, and only CAFs low density co-culture group had significant effect on promoting cancer. Conclusions The co-culture of gastric cancer cells with CAFs and NFs is greatly affected by the proportion. Low density co-culture can significantly improve the proliferation and metastasis ability of gastric cancer cells. High density co-culture may in turn inhibit the growth and metastasis of cancer cells, which may be related to the content of lactic acid and ROS.

2.
Organ Transplantation ; (6): 116-121, 2018.
Artigo em Chinês | WPRIM | ID: wpr-731719

RESUMO

Objective To investigate the effect of oxygen glucose deprivation-reperfusion (OGD-R) in astrocytes overexpressing endothelin (ET)-1 on the proliferation of neural stem/progenitor cells (NSPCs). Methods OGD-R models of negative control astrocytes (C6-Mock) and astrocytes over-expressing ET-1 (C6-ET-1) were constructed. Transwell co-culture system of astrocytes and NSPCs was established. Morphologic observation and identification of the astrocytes and primary NSPCs were performed. The cells were divided into four groups: C6-Mock+NSPCs, OGD-R+C6-Mock+NSPCs, C6-ET-1+NSPCs and OGD-R+C6-ET-1+NSPCs groups and co-cultured for 0, 24, 48 and 72 h respectively. The diameter of neurosphere was measured in each group. Results In the C6-Mock and C6-ET-1 cells, type Ⅰ astrocytes in fibrous morphology were observed. Glial fibrillary acidic protein (GFAP) was expressed in the cytoplasm of these two types of cells. Primary NSPCs were positive for nestin staining. After co-culture for 48 and 72 h, the neurosphere diameter in the OGD-R+C6-Mock+NSPCs group was significantly greater than that in the C6-Mock+NSPCs group. The neurosphere diameter in the OGD-R+C6-ET-1+NSPCs group was considerably greater than that in the C6-ET-1+NSPCs group. The neurosphere diameter in the OGD-R+C6-ET-1+NSPCs group was significantly greater compared with that in the OGD-R+C6-Mock+NSPCs group (all P<0.05). Conclusions OGD-R astrocytes can promote the proliferation of NSPCs. ET-1 over-expression further accelerates the proliferation of NSPCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA