Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Medical Biomechanics ; (6): E392-E396, 2015.
Artigo em Chinês | WPRIM | ID: wpr-804451

RESUMO

Objective To study the different effects from different concentration ratios of polymorphonuclear neutrophil (PMN) to tumor cell (TC) on the process of tumor cell adhesion to endothelial cell (EC) in shear flow. Methods PMNs and TCs with different concentration ratios (PMN-TC ratio) were added into the parallel plate flow chamber, and changes in the numbers of transient and accumulative adhered TCs on ECs at different shear rates (50 s-1,100 s-1,200 s-1) were analyzed. Results The transient and accumulative adhesion of TCs on ECs at PMN-TC ratio of 3︰1 significantly increased as compared to that at PMN-TC ratio of 1︰1, especially under high shear flow condition (100 s-1 and 200 s-1). Moreover, in the 5 minute-observation period, the effect of PMN-TC ratio on TC adhered to ECs occurred earlier when the shear rate increased. Conclusions The increase of PMN-TC concentration ratio can promote TC adhesion to ECs in shear flow, and the research findings provide significant references for studying TC metastasis in blood vessels and the target therapy of tumors.

2.
Journal of Medical Biomechanics ; (6): E099-E103, 2015.
Artigo em Chinês | WPRIM | ID: wpr-804434

RESUMO

Objective To study the effect of ghost red blood cells (GRBCs) on white blood cell (WBC)-mediated adhesion of tumor cells (TCs) on endothelial cells (ECs) in shear flow. Methods GRBCs with hematocrit (Hct) of 20% were added in the parallel plate flow chamber to observe changes in the number of tethered WBCs on ECs, the collision between TCs and adhesive WBCs, and the number of firmly adhered TCs at different shear rates of 62.5, 100, 200 s-1, respectively. Results GRBCs could increase the number of adhered WBCs on ECs and the collision between TCs and adhesive WBCs, and finally enhance the adhesion of TCs on ECs, especially at high shear rate (200 s-1). However, the adhesion efficiency of TCs was not significantly influenced by GRBCs. Conclusions GRBCs in shear flow can promote TC adhesion on ECs, and the research finding will provide a theoretical basis for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA