Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Journal of Chinese Physician ; (12): 70-75, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1026064

RESUMO

Objective:To explore the effects of apigenin on apoptosis and hypoxia inducible factor-1α (HIF-1α)/nuclear factor κB (NF-κB) signaling pathway in renal cancer A498 cells.Methods:Human renal cell carcinoma A498 cells were cultured in vitro and divided into different concentrations of apigenin (10, 20, 40 μmol/L) groups, apigenin (40 μmol/L)+ HIF-1α agonist dimethylenediaminoacetic acid (DMOG) group, HIF-1α inhibitor rifiximab (YC-1) group, and control group. Cell proliferation was detected using cell counting kit-8 (CCK-8) assay and plate clone formation assay, apoptosis was detected using Hoechst 33258 staining and flow cytometry, and expression of apoptotic proteins and HIF-1/NF-B pathway proteins was detected using Western blot assay.Results:Celery extract significantly inhibited the proliferation of A498 cells, and the inhibitory effect was concentration dependent ( P<0.001). Compared with the control group, the apoptosis rates of A498 cells in the 10, 20, and 40 μmol/L apigenin groups and YC-1 groups were significantly increased [(4.35±1.04)% vs (10.06±1.13)%, (18.52±2.58)%, (32.17±2.63)%, (26.94±2.41)%], as well as the expression levels of B lymphocyte tumor 2 related protein (Bax) and Cleaved Caspase-3 protein, while the expression levels of B lymphocyte tumor 2 (Bcl-2) were significantly reduced (all P<0.001). Compared with the control group, the HIF-1α protein expression levels (0.85±0.08 vs 0.63±0.06, 0.31±0.03, 0.16±0.02) and p-NF-κB p65/NF-κB p65 ratio (0.82±0.08 vs 0.51±0.05, 0.30±0.03, 0.13±0.01) of A498 cells in the 10, 20, and 40 μmol/L apigenin groups were significantly reduced (all P<0.001). Compared with the apigenin group, the apoptosis rate of A498 cells in the apigenin+ DMOG group was significantly reduced [(32.17±2.63)% vs (14.85±1.62)%], and the expression levels of Bax and Cleared Caspase-3 proteins were significantly reduced, while the expression levels of Bcl-2 proteins were significantly increased (all P<0.001). Conclusions:Apigenin may promote apoptosis in renal cancer A498 cells by inhibiting the activation of the HIF-1α/NF-κB signaling pathway.

2.
Rev. chil. nutr ; 50(6)dic. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550795

RESUMO

Oxidative stress (OS) occurs when the antioxidant defense system is overwhelmed by the predominance of reactive oxygen species (ROS) and pro-oxidant factors. Several diseases such as hypertension, insulin resistance, type 2 diabetes mellitus and neurodegenerative diseases are characterized by chronic OS. Physical exercise constitutes an affordable tool to prevent or ameliorate these conditions. However, during physical activity, acute ROS are produced inducing an activation in peroxisome proliferator activated receptor-Gamma Coactivator-1alpha (PGC-1α), and nuclear factor erythroid-2 related factor 2 (Nrf2), PGC-1α/Nrf2 pathway. This signaling pathway facilitates interaction with antioxidant response elements (ARE), thereby initiating an upregulation in the expression of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and mitochondrial biogenesis. In both cases, whether involving healthy animals or individuals engaged in physical exercise, supplementation with antioxidant scavengers leads to a reduction in the expression and activity of PGC-1α, SOD, CAT, and GPX across various tissues, which is not observed with indirect antioxidants. The preventive role of physical exercise against chronic OS is avoided when executed in conjunction with supplementation of scavenger antioxidants. However, similar to exercise, the indirect antioxidant apigenin can activate the PGC1-α/Nrf2 signaling pathway. Here, we summarize evidence supporting apigenin as a non-nutritional supplement that could enhance the adaptive effects of exercise, improving the endogenous antioxidant defense. Therefore, apigenin could be an interesting supplement to enhance the endogenous antioxidant adaptation induced by exercise in healthy subjects, but also to improve the effectiveness of exercise to prevent oxidative stress-associated diseases.


El estrés oxidativo (OS) ocurre cuando el sistema de defensa antioxidante es sobrepasado por el predominio de especies reactivas de oxígeno (ROS) y factores prooxidantes. Varias enfermedades como la hipertensión, la resistencia a la insulina, la diabetes mellitus tipo 2 y enfermedades neurodegenerativas se caracterizan por un OS crónico. El ejercicio físico constituye una herramienta asequible para prevenir o mejorar estas enfermedades. Sin embargo, durante la actividad física, se producen ROS agudas que inducen una activación en la vía PGC-1α/Nrf2. Esta vía de señalización facilita la interacción con los elementos de respuesta antioxidante (ARE), iniciando así una regulación que permite la expresión de enzimas antioxidantes, incluidas SOD, CAT, GPX y biogénesis mitocondrial. En ambos casos, ya sea que se trate de animales sanos o de individuos que practican ejercicio físico, la suplementación con antioxidantes "scavengers" conduce a una reducción en la expresión y actividad de PGC-1α, SOD, CAT y GPX en varios tejidos, lo que no se observa con antioxidantes "indirectos". El papel preventivo del ejercicio físico contra el OS crónico se atenúa cuando se realiza en conjunto con la suplementación de antioxidantes "scavengers". Sin embargo, de manera similar al ejercicio, la apigenina es un antioxidante "indirecto" que puede activar la vía de señalización PGC1-α/Nrf2. Aquí, resumimos la evidencia que respalda a apigenina como un suplemento no-nutricional que podría mejorar los efectos adaptativos del ejercicio, mejorando la defensa antioxidante endógena de sujetos sanos que no tienen suficiente tiempo para hacer ejercicio.

3.
Zhongguo Zhong Yao Za Zhi ; (24): 752-761, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970545

RESUMO

This study explores the effect of apigenin(APG), oxymatrine(OMT), and APG+OMT on the proliferation of non-small cell lung cancer cell lines and the underlying mechanisms. Cell counting kit-8(CCK-8) assay was used to detect the vitality of A549 and NCI-H1975 cells, and colony formation assay to evaluate the colony formation ability of the cells. EdU assay was employed to examine the proliferation of NCI-H1975 cells. RT-qPCR and Western blot were performed to detect the mRNA and protein expression of PLOD2. Molecular docking was carried out to explore the direct action ability and action sites between APG/OMT and PLOD2/EGFR. Western blot was used to study the expression of related proteins in EGFR pathway. The viability of A549 and NCI-H1975 cells was inhibited by APG and APG+OMT at 20, 40, and 80 μmol·L~(-1) in a dose-dependent manner. The colony formation ability of NCI-H1975 cells was significantly suppressed by APG and APG+OMT. The mRNA and protein expression of PLOD2 was significantly inhibited by APG and APG+OMT. In addition, APG and OMT had strong binding activity with PLOD2 and EGFR. In APG and APG+OMT groups, the expression of EGFR and proteins in its downstream signaling pathways was significantly down-regulated. It is concluded that APG in combination with OMT could inhibit non-small lung cancer, and the mechanism may be related to EGFR and its downstream signaling pathways. This study lays a new theoretical basis for the clinical treatment of non-small cell lung cancer with APG in combination with OMT and provides a reference for further research on the anti-tumor mechanism of APG in combination with OMT.


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apigenina , Simulação de Acoplamento Molecular , Alcaloides , Quinolizinas , RNA Mensageiro , Receptores ErbB
4.
Braz. j. biol ; 83: e247604, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339370

RESUMO

Abstract In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in vitro investigations are essential to ensure the anti SARS-CoV-2 activity of all bioactive compounds particularly axillarin to encourage preventive use of Centaurea jacea against COVID-19 infections.


Resumo No presente relatório, estudamos os possíveis inibidores de Covid-19 de constituintes bioativos de Centaurea jacea usando uma abordagem tripla que consiste em técnicas de química quântica, docking molecular e dinâmica molecular. Centaurea jacea é uma erva perene frequentemente usada em remédios populares de doenças dermatológicas e febre. Além disso, as propriedades anticâncer, antioxidante, antibacteriana e antiviral de seus compostos bioativos também são relatadas. A Mpro (proteases principais) foi acoplada a diferentes compostos de Centaurea jacea por meio de docking molecular. Todos os compostos estudados, incluindo apigenina, axilarina, Centaureidina, Cirsiliol, Eupatorina e Isokaempferide, mostram afinidades de ligação adequadas ao sítio de ligação da protease principal SARS-CoV-2 com suas energias de ligação -6,7 kcal / mol, -7,4 kcal / mol, - 7,0 kcal / mol, -5,8 kcal / mol, -6,2 kcal / mol e -6,8 kcal / mol, respectivamente. Dentre todos os compostos estudados, a axilarina apresentou eficiência máxima de inibidor, seguida pela Centaureidina, Isokaempferida, Apigenina, Eupatorina e Cirsiliol. Nossos resultados sugeriram que a axilarina se liga aos resíduos catalíticos mais cruciais CYS145 e HIS41 do Mpro, além disso a axilarina mostra 5 interações de ligações de hidrogênio e 5 interações hidrofóbicas com vários resíduos de Mpro. Além disso, os cálculos de dinâmica molecular em uma escala de tempo de 60 ns (6 × 106 femtossegundos) também mostraram percepções significativas sobre os efeitos de ligação da axilarina com Mpro de SARS-CoV-2 por imitação de proteínas como o ambiente aquoso. A partir de cálculos de dinâmica molecular, os cálculos RMSD e RMSF indicam a estabilidade e dinâmica do melhor complexo ancorado em ambiente aquoso. As propriedades ADME e a análise de previsão de toxicidade da axilarina também a recomendaram como um candidato a medicamento seguro. Além disso, as investigações in vivo e in vitro são essenciais para garantir a atividade anti-SARS-CoV-2 de todos os compostos bioativos, particularmente a axilarina, para encorajar o uso preventivo de Centaurea jacea contra infecções por Covid-19.


Assuntos
Humanos , Preparações Farmacêuticas , Centaurea , COVID-19 , Inibidores de Proteases , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , SARS-CoV-2
5.
Braz. J. Pharm. Sci. (Online) ; 59: e21283, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439509

RESUMO

Abstract The anecdotal use of Alternanthera sessilis L. as a relief for diabetes has been known in the Philippines for generations, and antidiabetic activity of similar varieties in other countries is likewise documented. However, the compounds responsible for this activity remain unclear. This study aims to isolate the anti-hyperglycemic fraction of local A. sessilis leaves and identify the compounds in this fraction. Methanol extract of A. sessilis leaves and its hexane, ethyl acetate (ASE), and water fractions were administered to alloxan-induced diabetic mice. ASE (250mg/kg) had the highest anti-hyperglycemic activity at 6-h post-treatment (25.81%±12.72%), with almost similar blood glucose reduction rate as metformin (30.13±3.75%, p=0.767). Repeated fractionation employing chromatographic separation techniques followed by in vivo anti-hyperglycemic assay yielded partially purified subfractions. A. sessilis ethyl acetate subfraction 4-2 (100mg/kg) displayed remarkable suppression of blood glucose rise in diabetic mice at 6-h post-treatment (26.45±3.75%, p<0.0001), with comparable activity with metformin (100mg/kg, 27.87±5.65%, p=0.652). Liquid chromatography/mass spectrometry showed eight distinct peaks, with four peaks annotated via the Traditional Chinese Medicine library and custom library for A. sessilis. Among these, luteolin, apigenin, ononin, and sophorabioside were identified as putative compounds responsible for the anti-hyperglycemic activity. This result provided basis for the reported anecdotal claims and potential utility of the local variety of A. sessilis leaves as sources of anti-hyperglycemic agents


Assuntos
Animais , Masculino , Feminino , Camundongos , Espectrometria de Massas/métodos , Bioensaio/métodos , Folhas de Planta/classificação , Amaranthaceae/efeitos adversos , Cromatografia Líquida/métodos , Apigenina/agonistas
6.
Braz. j. biol ; 83: 1-15, 2023. ilus, graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468914

RESUMO

In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in [...].


No presente relatório, estudamos os possíveis inibidores de Covid-19 de constituintes bioativos de Centaurea jacea usando uma abordagem tripla que consiste em técnicas de química quântica, docking molecular e dinâmica molecular. Centaurea jacea é uma erva perene frequentemente usada em remédios populares de doenças dermatológicas e febre. Além disso, as propriedades anticâncer, antioxidante, antibacteriana e antiviral de seus compostos bioativos também são relatadas. A Mpro (proteases principais) foi acoplada a diferentes compostos de Centaurea jacea por meio de docking molecular. Todos os compostos estudados, incluindo apigenina, axilarina, Centaureidina, Cirsiliol, Eupatorina e Isokaempferide, mostram afinidades de ligação adequadas ao sítio de ligação da protease principal SARS-CoV-2 com suas energias de ligação -6,7 kcal / mol, -7,4 kcal / mol, - 7,0 kcal / mol, -5,8 kcal / mol, -6,2 kcal / mol e -6,8 kcal / mol, respectivamente. Dentre todos os compostos estudados, a axilarina apresentou eficiência máxima de inibidor, seguida pela Centaureidina, Isokaempferida, Apigenina, Eupatorina e Cirsiliol. Nossos resultados sugeriram que a axilarina se liga aos resíduos catalíticos mais cruciais CYS145 e HIS41 do Mpro, além disso a axilarina mostra 5 interações de ligações de hidrogênio e 5 interações hidrofóbicas com vários resíduos de Mpro. Além disso, os cálculos de dinâmica molecular em uma escala de tempo de 60 ns (6 × 106 femtossegundos) também mostraram percepções significativas sobre os efeitos de ligação da axilarina com Mpro de SARS-CoV-2 por imitação de proteínas como o ambiente aquoso. A partir de cálculos de dinâmica molecular, os cálculos RMSD e RMSF indicam a estabilidade e dinâmica do melhor complexo ancorado em ambiente [...].


Assuntos
Apigenina/análise , Apigenina/uso terapêutico , Centaurea/química , Fenômenos Químicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos
7.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469130

RESUMO

Abstract In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in vitro investigations are essential to ensure the anti SARS-CoV-2 activity of all bioactive compounds particularly axillarin to encourage preventive use of Centaurea jacea against COVID-19 infections.


Resumo No presente relatório, estudamos os possíveis inibidores de Covid-19 de constituintes bioativos de Centaurea jacea usando uma abordagem tripla que consiste em técnicas de química quântica, docking molecular e dinâmica molecular. Centaurea jacea é uma erva perene frequentemente usada em remédios populares de doenças dermatológicas e febre. Além disso, as propriedades anticâncer, antioxidante, antibacteriana e antiviral de seus compostos bioativos também são relatadas. A Mpro (proteases principais) foi acoplada a diferentes compostos de Centaurea jacea por meio de docking molecular. Todos os compostos estudados, incluindo apigenina, axilarina, Centaureidina, Cirsiliol, Eupatorina e Isokaempferide, mostram afinidades de ligação adequadas ao sítio de ligação da protease principal SARS-CoV-2 com suas energias de ligação -6,7 kcal / mol, -7,4 kcal / mol, - 7,0 kcal / mol, -5,8 kcal / mol, -6,2 kcal / mol e -6,8 kcal / mol, respectivamente. Dentre todos os compostos estudados, a axilarina apresentou eficiência máxima de inibidor, seguida pela Centaureidina, Isokaempferida, Apigenina, Eupatorina e Cirsiliol. Nossos resultados sugeriram que a axilarina se liga aos resíduos catalíticos mais cruciais CYS145 e HIS41 do Mpro, além disso a axilarina mostra 5 interações de ligações de hidrogênio e 5 interações hidrofóbicas com vários resíduos de Mpro. Além disso, os cálculos de dinâmica molecular em uma escala de tempo de 60 ns (6 × 106 femtossegundos) também mostraram percepções significativas sobre os efeitos de ligação da axilarina com Mpro de SARS-CoV-2 por imitação de proteínas como o ambiente aquoso. A partir de cálculos de dinâmica molecular, os cálculos RMSD e RMSF indicam a estabilidade e dinâmica do melhor complexo ancorado em ambiente aquoso. As propriedades ADME e a análise de previsão de toxicidade da axilarina também a recomendaram como um candidato a medicamento seguro. Além disso, as investigações in vivo e in vitro são essenciais para garantir a atividade anti-SARS-CoV-2 de todos os compostos bioativos, particularmente a axilarina, para encorajar o uso preventivo de Centaurea jacea contra infecções por Covid-19.

8.
Artigo | IMSEAR | ID: sea-217739

RESUMO

Background: Arthritis is a leading cause of physical disability and impaired quality of life. At present, symptomatic treatment is available for arthritis. According to literature, apigenin possess anti-inflammatory activity. Aims and Objectives: The present study aimed to screen the anti-inflammatory activity of Apigenin in freund’s induced arthritis in Wistar albino rats. Materials and Methods: A total 30 rats were selected and divided into five groups each of six animals. Group – I (Normal saline), Group – II (Freund’s adjuvant (0.1 ml of 0.5%), Group – III (Dexamethasone 0.1 mg/kg), Group – IV (Apigenin 50 mg/kg), and Group – V (Apigenin 100 mg/kg) doses were administered to their respective groups for 28 days. X-ray was taken on 28th day and animals were sacrificed and affected paw used for histopathological examination. Results: Group – II rats showed inflammation, thickness, fibro, and fatty changes in joint compared to Group – I X-ray and histopathological examination. Groups – III and V rats showed reduction inflammation, thickness, and fatty changes compared to Group – II. Group – IV showed lesser effect compared Group – V. Conclusion: Apigenin administration significantly prevent the Freund’s induced radiological and histopathological changes in rats.

9.
China Pharmacy ; (12): 58-63, 2022.
Artigo em Chinês | WPRIM | ID: wpr-907013

RESUMO

OBJECTIVE To prepare apigenin silk fibroin(API@SF)nanoparticles and to evaluate their safety and anti-tumor activity. METHODS API@SF nanoparticles were prepared by nanoprecipitation method ,and their morphology ,particle size ,Zeta potential,drug loading amount and in vitro release were characterized. The safety of nanoparticles was evaluated by hemolysis test and HE staining. MTT assay was adopted to evaluate inhibitory effects of API@SF nanoparticles on breast cancer 4T1 cells in mice. RESULTS The prepared API@SF nanoparticles were spherical with uniform distribution. The average particle size was 406.61 nm, the polydispersity index was 0.154,the Zeta potential was -18.4 mV,and the average drug-loading amount was 5.20%. The in vitro release results showed that the release rate of the nanoparticles was relatively fast in the release medium of pH 5.0 and relatively slow in the release medium of pH 7.4. Results of hemolysis test and HE staining showed that the nanoparticles had good biocompatibility. Results of MTT assay showed that the inhibitory effect of API@SF nanoparticles on 4T1 cells was significantly higher than that of API raw materials (P<0.05),and its mechanism may be related to increasing the level of reactive oxygen species in cells. CONCLUSIONS API@SF nanoparticles are prepared successfully ,which possess good safety and anti-tumor activity.

10.
Artigo em Chinês | WPRIM | ID: wpr-940148

RESUMO

ObjectiveTo study the effect of apigenin on the proliferation and apoptosis of human colon cancer CL187 cells and the underlying mechanisms. MethodHuman colorectal cancer CL187 cells were treated with different concentrations of apigenin (0, 30, 45, 60 mg·L-1) according to the results of the preliminary experiment. The proliferation of CL187 cells was detected by methyl thiazolyl tetrazolium (MTT) and colony formation assays, and the apoptosis was observed via Hoechst 33258 staining. Real-time fluorescence quantitative PCR was conducted to determine the mRNA levels of cysteine protease-3 (Caspase-3), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in the CL187 cells treated with apigenin. Western blot was employed to measure the protein levels of Caspase-3, Bcl-2, and Bax associated with apoptosis, protein kinase B (Akt) and phosphorylated Akt (p-Akt) in phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, and extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase (JNK), p-JNK, p38 mitogen-activated protein kinase (MAPK), and p-p38 MAPK protein in MAPK pathway. ResultCompared with the blank group, the apigenin groups had low cell survival rates and high inhibition rates on cell proliferation (P<0.01). Apigenin decreased the cell clone number and clone formation rate, and increased the inhibition rate on clone formation (P<0.01). After CL187 cells were treated with different concentrations of apigenin for 48 h, typical apoptosis characteristics such as nuclear pyknosis, chromatin condensation, and enhanced fluorescence reaction were observed. Compared with blank group, 45, 60 mg·L-1 apigenin treatments down-regulated the mRNA level of anti-apoptotic gene Bcl-2 (P<0.01) and all the apigenin treatments up-regulated those of the pro-apoptotic genes Bax and Caspase-3 (P<0.05, P<0.01). Similarly, apigenin treatments down-regulated the protein level of Bcl-2 (P<0.05, P<0.01) and up-regulated those of Caspase-3 (P<0.05, P<0.01) and Bax (P<0.01, 45, 60 mg·L-1). The blank group had higher protein level of Akt than the 60 mg·L-1 apigenin group (P<0.01), higher protein levels of p-Akt, ERK1/2, and p-ERK1/2 than the 45, 60 mg·L-1 apigenin groups (P<0.01), and higher protein levels of JNK and p-JNK than the apigenin groups (P<0.05, P<0.01). Compared with blank group, 60 mg·L-1 apigenin up-regulated the protein level of p38 MAPK (P<0.05), and all the apigenin groups up-regulated that of p-p38 MAPK (P<0.01). Furthermore, apigenin lowered the p-Akt/Akt ratio (P<0.05, P<0.01) and p-ERK1/2/ERK1/2 ratio (P<0.01), while it increased the p-JNK/JNK ratio (45, 60 mg·L-1; P<0.05, P<0.01) and p-p38 MAPK/p38 MAPK ratio (P<0.05, P<0.01). ConclusionApigenin can inhibit the proliferation and promote the apoptosis of CL187 cells by inhibiting the PI3K/Akt signaling pathway and regulating the expression of proteins in the MAPK signaling pathway.

11.
Artigo em Chinês | WPRIM | ID: wpr-940180

RESUMO

ObjectiveTo study the effect of apigenin on the proliferation and apoptosis of human colon cancer CL187 cells and the underlying mechanisms. MethodHuman colorectal cancer CL187 cells were treated with different concentrations of apigenin (0, 30, 45, 60 mg·L-1) according to the results of the preliminary experiment. The proliferation of CL187 cells was detected by methyl thiazolyl tetrazolium (MTT) and colony formation assays, and the apoptosis was observed via Hoechst 33258 staining. Real-time fluorescence quantitative PCR was conducted to determine the mRNA levels of cysteine protease-3 (Caspase-3), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in the CL187 cells treated with apigenin. Western blot was employed to measure the protein levels of Caspase-3, Bcl-2, and Bax associated with apoptosis, protein kinase B (Akt) and phosphorylated Akt (p-Akt) in phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, and extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase (JNK), p-JNK, p38 mitogen-activated protein kinase (MAPK), and p-p38 MAPK protein in MAPK pathway. ResultCompared with the blank group, the apigenin groups had low cell survival rates and high inhibition rates on cell proliferation (P<0.01). Apigenin decreased the cell clone number and clone formation rate, and increased the inhibition rate on clone formation (P<0.01). After CL187 cells were treated with different concentrations of apigenin for 48 h, typical apoptosis characteristics such as nuclear pyknosis, chromatin condensation, and enhanced fluorescence reaction were observed. Compared with blank group, 45, 60 mg·L-1 apigenin treatments down-regulated the mRNA level of anti-apoptotic gene Bcl-2 (P<0.01) and all the apigenin treatments up-regulated those of the pro-apoptotic genes Bax and Caspase-3 (P<0.05, P<0.01). Similarly, apigenin treatments down-regulated the protein level of Bcl-2 (P<0.05, P<0.01) and up-regulated those of Caspase-3 (P<0.05, P<0.01) and Bax (P<0.01, 45, 60 mg·L-1). The blank group had higher protein level of Akt than the 60 mg·L-1 apigenin group (P<0.01), higher protein levels of p-Akt, ERK1/2, and p-ERK1/2 than the 45, 60 mg·L-1 apigenin groups (P<0.01), and higher protein levels of JNK and p-JNK than the apigenin groups (P<0.05, P<0.01). Compared with blank group, 60 mg·L-1 apigenin up-regulated the protein level of p38 MAPK (P<0.05), and all the apigenin groups up-regulated that of p-p38 MAPK (P<0.01). Furthermore, apigenin lowered the p-Akt/Akt ratio (P<0.05, P<0.01) and p-ERK1/2/ERK1/2 ratio (P<0.01), while it increased the p-JNK/JNK ratio (45, 60 mg·L-1; P<0.05, P<0.01) and p-p38 MAPK/p38 MAPK ratio (P<0.05, P<0.01). ConclusionApigenin can inhibit the proliferation and promote the apoptosis of CL187 cells by inhibiting the PI3K/Akt signaling pathway and regulating the expression of proteins in the MAPK signaling pathway.

12.
China Pharmacy ; (12): 2187-2191, 2022.
Artigo em Chinês | WPRIM | ID: wpr-943055

RESUMO

OBJECTIVE To separ ate and identify the flavone C-glycosides from the leaves of Dendrobium officinale ,and to evaluate their in vitro inhibitory activities to α-glucosidase. METHODS The flavone C-glycosides from the leaves of D. officinale were separated and purified by macroporous adsorption resin and preparative high -performance liquid chromatography . The structure of obtained compound was elucidated and identified by spectroscopic methods ,such as ultraviolet spectrum ,nuclear magnetic resonance,high-resolution electrospray ionization mass spectrometry ,etc. The in vitro inhibitory activities of flavone C-glycosides and positive control (acarbose)to α-glucosidase were investigated . RESULTS Five apigenin -6,8-di-C-glycosides were isolated and purified from the leaves of D. officinale,and identified as apigenin -6-C-α-L-rhamnosyl-8-C-β-D-quinovoside(1), schaftoside(2),isoschaftoside(3),isoviolanthin(4)and violanthin (5). Half inhibitory concentration of compound 1-5 and acarbose inhibiting α-glucosidase were (1.79±1.27),(2.05±0.72),(1.93±0.67),(1.09±0.46),(1.36±0.58),(18.69±1.24)μmol/L, respectively. CONCLUSIONS Five apigenin -6,8-di-C-glycosides with α-glucosidase inhibitory activity are isolated from the leaves of D. officinale,of which compound 1 is a new compound and compound 2 is isolated from this plant for the first time .

13.
Chinese Pharmacological Bulletin ; (12): 1010-1016, 2022.
Artigo em Chinês | WPRIM | ID: wpr-1014056

RESUMO

Aim To evaluate the therapeutic effect of apigenin on liver fibrosis in mice anrl the pharmacologi¬cal mechanism.Methods Carbon tetrachloride ( CC14) -induced liver fibrosis mouse model was estab¬lished.The mice were divided into six groups of con¬trol, model, silibinin(55 mg • kg 1 • d 1 ) , apigenin in high dosage (60 mg • kg 1 • d 1 ) , apigenin in mid¬dle dosage( 30 mg • kg 1 • d 1 ) and apigenin in low dosage( 15 mg • kg 1 • d 1 ).The general life status, body weight and liver coefficient of the mice in every group were recorded.HE staining, Masson staining, immunohistochemistry and Western blot were used to e- valuate the effect of apigenin on the pathological chan¬ges, the markers related to epithelial-mesenchymal transition and signaling pathways of liver tissues.Re¬sults In CCI4-induced liver fibrosis mice, middle and high-dosage of apigenin could improve the general life status, increase body weight, decrease liver coeffi¬ cient, and significantly improve liver lesions.Middle and high-dosage of apigenin significantly increased the expression of the epithelial marker protein E-cadherin and significantly decreased the expression of the mes¬enchymal marker protein Vimentin in liver tissues of mice with the disease.The further results showed that middle and high-dosage apigenin could significantly in¬hibit the expression of phosphorvlated PDK1 and phos- phorvlated AKT protein in liver tissues of model mice.Conclusions Apigenin can inhibit EMT by inhibiting PDK1/AKT signaling pathway, which plays an anti-fi- brosis role.The apigenin has the potential to be further developed as a drug to protect the liver and treat liver fibrosis.

14.
Artigo em Chinês | WPRIM | ID: wpr-904751

RESUMO

Objective To find small molecules binding specifically to signal transducer and activator of transcription3 (STAT3) based on surface plasmon resonance (SPR) technology and confirm their inhibitory activities to STAT3. Methods The biomolecular interaction analysis T200 system based on SPR technology was used to couple the purified protein STAT3 to CM5 chip under the optimal pH conditions. The compounds with high binding response value were screened out from 50 candidate compounds derived from traditional Chinese medicines and the binding specificity was then confirmed. Biological experiments were performed to confirm the inhibitory effects of the screened compounds on STAT3. The binding pattern of STAT3 and the compound was fitted by molecular docking technique. Results More than 10 candidate molecules exhibited binding activities to STAT3 and kinetics assays revealed that only one candidate molecule, apigenin, showed specific binding. Western-blot analysis exhibited that apigenin inhibited the phosphorylation of STAT3 dose-dependently. Luciferase reporter gene assays demonstrated that apigenin also inhibited IL-6-induced STAT3 transcriptional activity in a dose-dependent manner. Molecular docking results showed that apigenin binds to the SH2 domain of STAT3, and interacts with key residues Glu638, Gln644, Gly656 and Lys658 by hydrogen bonds and with Tyr657 through π-π interactions. Conclusion Apigenin was a direct inhibitor of STAT3.

15.
Artigo em Chinês | WPRIM | ID: wpr-988359

RESUMO

Objective To investigate the inhibitory effect of apigenin-7-o-glucoside (AGL) on the viability of Huh7 cells and tumor growth in Huh7-xenograft tumor nude mice. Methods CCK-8 was used to detect the proliferation inhibitory effect and the half inhibitory concentration of AGL on Huh7 cells. The mitochondrial membrane potential measurement was used to analyze the early apoptosis of Huh7 cells after AGL treatment. Flow cytometry was used to analyze the effect of AGL on Huh7 cell apoptosis, and Western blot was used to explore the expression level of the proteins associated with apoptosis and inflammation, as well as the possible related mechanism. In Huh7-xenograft tumor nude mice, vernier caliper was used to measure tumor volume to analyze the effect of AGL on tumor growth rate. HE staining was used to observe the pathological state of mouse organs, and the inflammation-related factors in serum were detected with ELISA. Results After Huh7 cells were treated with AGL, the mitochondrial membrane potential reduced, the content of ROS increased and the apoptosis rate was increased to 25.23% by 50 μmol/L AGL treatment; while the expression levels of Bax, Bad, Cleaved Caspase-3 and Cleaved Caspase-9 increased, and the expression levels of Bcl2 and Bcl-xL decreased, the phosphorylation level of NF-κB, IKKα/β and IκBα decreased; the tumor growth rate decreased, the serum IL-6 and TNF-α levels significantly decreased, while the IL-2 and IL-10 levels increased. Conclusion AGL could promote the apoptosis of Huh7 cells and relieve the tumor development in Huh7-xenograft tumor nude mice, which may be related to the NF-κB pathway.

16.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21200179, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153293

RESUMO

HIGHLIGHTS L. duriusculum n-BuOH extract reduces inflammatory responses both in vitro and in vivo. L. duriusculum n-BuOH extract inhibits NF-κB-dependent transcriptional responses. L. duriusculum n-BuOH extract decreases the expression of TNF-α and IL-6 genes.


Abstract Limonium duriusculum is used in folk medicine to treat inflammatory disorders and has gained attention due to its richness in apigenin. The present investigation was performed to evaluate and confirm its anti-inflammatory properties, in cell lines and animal models. The potential anti-inflammatory properties of n-butanol (n-BuOH) extract of L. duriusculum (BEL) and isolated apigenins were examined on NF-κB transcriptional activity in TNFα- or LPS-stimulated cells, and on in vivo acute inflammatory models (carrageenan induced paw edema and peritonitis). BEL treatment was able to inhibit the activity of an NF-κB reporter gene in HCT116 cells both in the absence and in the presence of exogenous TNFα, used as NF-κB pathway inducer. This anti-inflammatory effect was even more potent compared to Apigenin (APG1) and was confirmed using monocyte-derived THP-1 cells treated with LPS to stimulate NF-κB-dependent transcription of IL-6 and TNFα mRNAs. Apigenin7-O-β-(6''-methylglucuronide) (APG2) was instead inactive both in HCT116 and THP-1 cells. BEL (oral, 200 mg/kg) led to paw swelling inhibition, vascular permeability and peritoneal leukocyte and PN migration diminution. Apigenins (intraperitoneal, APG1, APG2: 20 mg/kg) also evoked a significant anti-edema effect, early vascular permeability and leukocyte influx reduction. Collectively, this study demonstrates for the first time the effectiveness of L. duriusculum to inhibit NF-κB-dependent transcriptional responses in HCT116 and THP-1 cells. In vivo studies also established that L. duriusculum possesses a potential anti-inflammatory effect, confirm its traditional, empirical use, that could be attributed to its richness in apigenin.


Assuntos
Humanos , Animais , Masculino , Ratos , Extratos Vegetais/farmacologia , Plumbaginaceae/química , Imunomodulação/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Interleucina-6 , Ratos Wistar , Modelos Animais , Células THP-1
17.
J Biosci ; 2020 Jun; : 1-9
Artigo | IMSEAR | ID: sea-214286

RESUMO

We aimed to detect whether the effect of apigenin (Apig) on the myocardial infarction-induced cardiomyocyte injury ofmouse myocardial cells and acute myocardial infarction (AMI) mice was through regulating Parkin expression viamiR-103-1-5p. The myocardial infarction cardiomyocyte model (Hypoxia/reoxygenation) was first constructed, thenthe mouse myocardial cells were treated with Apig, and the expression of miR-103-1-5p was decreased and theexpression of Parkin was increased by qRT-PCR and Western blot. It was confirmed by miRNA pulldown andluciferase reporter system that miR-103-1-5p in mouse myocardial cells can bind to Parkin mRNA and inhibit Parkinexpression. Next, a lentiviral vector silenced Parkin and overexpressing miR-103-1-5p was constructed and transfectedinto Apig-treated cells. Autophagy was detected by mitochondrial autophagy marker proteins [atypical protein kinaseC (aPKC)-interacting protein (p62) and bcl-2/Adenovirus E1B 19-kd interacting protein 3 (BNIP3)] via Western blot,mitochondrial function was detected by JC-1 probe, and apoptosis was detected by flow cytometry. It was confirmedthat Apig regulated mitochondria autophagy through miR-103-1-5p and Parkin, which ultimately affected cardiomyocyte death. Finally, an AMI mouse model was constructed, and then the mice were treated with Apig. Theinfarct size was detected by triphenyl tetrazolium chloride (TTC) staining, and the Apig relieved the myocardialinfarction. The expression of miR-103-1-5p was decreased and the expression of Parkin was increased by qRT-PCRand Western blot. The above results simplified that the cardio protection of Apig and miR-103-1-5p against injury ofmyocardial infarction cardiomyocyte by targeting Parkin. These results provided a novel treatment against myocardialinfarction cardiomyocyte.

18.
Artigo | IMSEAR | ID: sea-210743

RESUMO

Dengue viral infection becomes highly epidemic and rashes the economic stability of most of the developing countriesdue to its wide prevalence with limited therapeutic ailments. Alarming demographic data urge the need for thedevelopment of new antiviral agents which are safe and efficacious. This study aimed to evaluate the antiviral potentialof bioflavonoids (apigenin, hesperidin, kaempferol, myricetin, and naringenin) against dengue virus nonstructural(NS)5 RNA-dependent RNA polymerase (RdRp) by AutoDock and tox prediction tools. The results of moleculardocking analysis strongly suggested that the lead phytocomponents such as apigenin, hesperidin, and kaempferolreveal potential RdRp inhibition as ascertained by its interaction with core active amino acid residues (710 SER, 729ARG, and 737 ARG) on the target. Apigenin exhibited the best binding affinity of −8.28kcal/mol with RdRp, followedby kaempferol (−7.00 kcal/mol), myricetin (−4.37 kcal/mol), naringenin (−4.35 kcal/mol), and hesperidin(−3.20 kcal/mol). The present research finding clearly advocates that plant-derived bioflavonoids possess excellent antiviralproperty against the selected target.

19.
Chinese Pharmacological Bulletin ; (12): 543-549, 2020.
Artigo em Chinês | WPRIM | ID: wpr-857000

RESUMO

Aim To investigate the role and mechanism of NLRP3 on hypolipidemic effect and anti-inflammative effect of apigenin. Methods Triton-WR 1339-induced hyperlipidemia was applied to wide type C57BL/6 and NLRP3"'" mice, which was treated with apigenin of 6.25 mg • kg"1 • day"1 for five days. Blood and liver tissueswere collected for detecting TC, TG, HDL, LDL, IL-1B, IL-6, MCP-1 and the liver underwent HE staining. The expressions of NLRP3, I L 4, ASC, CD36, CYP7A1 and FGF21 were tested using RT-qPCR. Results Compared with NLRP3 "'" model group, serum contents of TC, TG, HDL, LDL, IL-1B, IL-6, MCP-1 were reduced in NLPR3"'" treated with apigenin of 6. 25 mg • kg"1 (P < 0. 05). The percentage of hepatic steatosis wasdown-regulated by apigenin in pathogenesis observation. However, all these phenotype changes were not observed in WT mice treated with apigenin. Moreover, up-regulation of CD36 and vLDLR and down-regualtion of ASC and IL-4 were founded in both WT and NLRP3"'" model group (P < 0. 05), while down-regulation of FGF21 and up-regulation of CYP7A1 were only seen in NLRP3"/ _ model group but not in WT group. Conclusions Knockout of NLRP3 enhances hypolipidemic effect and anti-inflammative effect of apigenin in triton-1339 IP-induced hyperlipidemia mice, which may be associated with apigenin-regulated FGF21/CYP7A1 pathway without NLRP3 inflammasome interruption.

20.
Zhongcaoyao ; Zhongcaoyao;(24): 5788-5797, 2020.
Artigo em Chinês | WPRIM | ID: wpr-846051

RESUMO

Objective: To evaluate the synergistic anticancer effects of the combination of apigenin (Api) and tanshinone Ⅱ A (Tan IIA), and investigate the mechanisms of pharmacological effects and their potential applications as an anticancer therapy in clinics. Methods: MTT assay were used to determine anticancer effects of the combination of Api and Tan ⅡA on BGC823, MCF7, and SMMC7721 cells. AV-PI dual stain and PI staining method were used for detecting the effect of the two drugs combination on BGC823 cell apoptosis and cell cycle. Expression of p53, BAX/BCL-2, cyclin B1 and D1 proteins were determined by Western blotting. Circular dichroism method and DNA melting point method were explored to detect interaction among the two drugs and DNA. S180 tumor xenograft mice model was used to evaluate the antitumor effects of the two drugs combination. Results: Tan IIA combined with Api exerted synergistic inhibitory effects on the proliferation of BGC823 and other tumor cells with the CI of 0.28. After tumor cell treated by combination of Tan IIA and Api, the tumor cell apoptosis was significantly enhanced and the value of BAX/BCL-2 in cells was up-regulated (P < 0.01); The levels of cyclin B1, D1 protein were changed and cell cycle arrest was increased which mainly blocked in S phase. The interaction among the two drugs and DNA was in two different ways, leading to the curves of thermal denaturation of DNA changed significantly. Furthermore, the combination of Tan IIA and Api showed a stronger inhibitory effect on tumor volume and weight in S180 mice model than monotherapy, which was similar to cyclophosphamide therapy but less side effects. Conclusion Tan IIA combined with Api exerted synergistic antitumor effects. The two drugs interacted with DNA in different ways and aggravated the cell cycle arrest, which were the key mechanisms of their synergistic antitumor effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA