Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 101-108, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006560

RESUMO

ObjectiveTo investigate the promotional effect of astragaloside on the repair and healing of chronic non-healing wounds and its mechanism. MethodA total of 60 male SD rats were constructed with full-layer skin defect wounds on the back, and except for the control (Con) group, the rest were constructed with non-healing wounds, which were then randomly divided into the sham-operation (sham) group, the low-dose astragaloside group, the high-dose astragaloside group, the astragaloside + LY294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] group, and the astragaloside + EX527 [silencing regulatory protein 1 (SIRT1) inhibitor] group. The percentage of wound area in each group was observed on the 2nd, 4th, 6th, and 8th days after wound molding. Collagen type Ⅰ alpha 1 (COL1A1) and alpha smooth muscle actin (α-SMA) expressions in the wound tissue were detected by immunofluorescence. Hematoxylin and eosin (HE) staining was performed to determine the pathological structure of the wound. The mRNA expression of inflammatory factors in the wound was measured by real-time polymerase chain reaction (Real-time PCR), and the expression of proteins related to the SIRT1/ nuclear factor (NF)-κB and PI3K/protein kinase B (Akt) signaling pathways in the wound was tested by Western blot. ResultCompared with the sham group, the percentage of postoperative wound area of rats in both low-dose and high-dose astragaloside groups gradually decreased with time, and the efficacy of the high-dose astragaloside group was better. Compared with the Con group, the fluorescence intensity of COL1A1 in wound tissue of the sham group decreased, while the expression of α-SMA increased. The epithelial tissue was severely damaged, with an increase in the thickness, and a large number of inflammatory cells were seen in the infiltration. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) was elevated. The protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was elevated, while SIRT1 expression was decreased (P<0.05). Compared with the sham group, the fluorescence intensity of COL1A1 and α-SMA increased after astragaloside treatment. The number of epithelial cells increased, and the thickness decreased. The inflammatory cells decreased, and the amount of collagen increased. The mRNA expression of TNF-α, IL-1β, IL-6, and iNOS was decreased, and the protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was decreased. SIRT1 was elevated, and the effect was better in the high-dose astragaloside group (P<0.05). Compared with the high-dose astragaloside group, inhibition of the PI3K/Akt and SIRT1 pathways by LY294002 and EX527 prevented the therapeutic efficacy of astragaloside on chronic non-healing wounds. ConclusionThe topical application of astragaloside significantly promotes the healing of chronic non-healing wounds in rats, and the mechanism may be related to the activation of the PI3K/Akt pathway and the SIRT1/NF-κB pathway.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 72-79, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006270

RESUMO

ObjectiveTo study the mechanism of astragaloside Ⅳ (AS Ⅳ) on db/db mice with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) based on network pharmacology and experimental validation. MethodA total of 24 db/db mice were randomly divided into four groups: model group, metformin group, and low-dose and high-dose AS Ⅳ groups. Six C57 mice were used as the blank group. The low-dose and high-dose AS Ⅳ groups were given AS Ⅳ of 0.015 and 0.030 g·kg-1 by gavage, and the metformin group was given 0.067 g·kg-1 by gavage. The blank and model groups were given equal volumes of distilled water by gavage. After intragastric administration, fasting blood glucose (FBG) was detected, and an oral glucose tolerance test was performed. Serum lipid level and liver histopathology were detected. The target and enrichment pathway of AS Ⅳ for treating T2DM and NAFLD were predicted by network pharmacology, and the main enrichment pathway was verified by molecular biology techniques. The protein expressions of AMPK, p-AMPK, sterol regulatory element-binding protein-1 (SREBP-1), and fatty acid synthetase (FAS) in liver tissue were detected by Western blot. ResultCompared with the blank group, the levels of body mass, liver weight coefficient, fasting blood glucose, serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol in mice treated with AS Ⅳ were decreased (P<0.05, P<0.01). The pathology of liver tissue showed significant improvement in lipid accumulation, and imaging results showed that the degree of fatty liver was reduced after AS Ⅳ therapy. Network pharmacological prediction results showed that vascular endothelial growth factor α (VEGFA), galactoagglutinin 3 (LGALS3), serine/threonine kinase B2 (Akt2), RHO-associated coiled-coil protein kinase 1 (ROCK1), serine/threonine kinase B1 (Akt1), signaling and transcriptional activator protein (STAT3), and messtimal epidermal transformation factor (MET) were key targets in "drug-disease" network. The results from the Kyoto encyclopedia of genes and genomes (KEGG) enrichment showed that the AMP-dependent protein kinase (AMPK) signaling pathway was strongly associated with T2DM and NAFLD. Western blot results showed that compared with the blank group, the expression levels of p-AMPK/AMPK in the model group were significantly down-regulated, while those of SREBP-1 and FAS proteins were significantly up-regulated (P<0.01). Compared with the model group, the expression levels of p-AMPK/AMPK in the metformin group and high-dose AS Ⅳ group were significantly up-regulated, while those of SREBP-1 and FAS proteins were significantly down-regulated (P<0.05, P<0.01). ConclusionAS Ⅳ regulates the expression of lipid proteins by activating the AMPK signaling pathway, thereby improving lipid metabolism.

3.
Acta Pharmaceutica Sinica ; (12): 232-242, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005445

RESUMO

To optimize the formulation and technology of oxymatrine-astragaloside IV coloaded liposomes (Om-As-Lip) based on quality by design (QbD) principles, and further to verify the feasibility of its amplification process, Om-As-Lip was prepared by ethanol injection combined with pH gradient method. The critical material attributions of Om-As-Lip were evaluated by dual-risk analysis tools and Plackett-Burman design (PBD). The formulation of Om-As-Lip was further optimized with the Box-Behnken design (BBD). The design space was also established based on the contour plots of BBD. In order to further investigate the amplification process of Om-As-Lip, the critical process parameters of high-pressure homogenization (HPH) were optimized by single-factor test, and the quality of the final product was also evaluated. The results of risk analysis and PBD confirmed that the astragaloside concentration, cholesterol concentration, and phospholipid ratio (HSPC∶SPC) were the ctitical material attributes. The model established by BBD had a good predictability, and the optimized mass ratio of As to phospholipids was 1∶40, cholesterol to phospholipids was 1∶10, HSPC to SPC was 51∶9. The design space of Om-As-Lip was as follows: the ratio of cholesterol to phospholipids was 1∶12-1∶5 and HSPC to SPC was 1∶7-17∶3. The optimized high-pressure homogenization pressure was 600 bar, temperature was 4 ℃, and cycle times was 6 times for HPH-Om-As-Lip. The quality of Om-As-Lip prepared based on the QbD concept can meet the expected CQAs, and the formulation and technology established can provide a reliable experimental basis for its future development and applications.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 208-217, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003783

RESUMO

Heart failure is one of the main cardiovascular system diseases at present, and it is a clinical syndrome caused by changes in cardiac structure and function, resulting in impaired ejection function or ventricular filling. Therefore, heart failure has become the most important cardiovascular disease in the 21st century. In recent years, the incidence of heart failure is increasing, and the survival rate of patients with heart failure is very low. Traditional Chinese medicine has rich experience in preventing and treating heart failure. With the modernization of traditional Chinese medicine, more and more attention has been paid to the research, development, and application of active ingredients in traditional Chinese medicine. Traditional Chinese medicine has unique advantages in improving the heart function of patients with heart failure by treating multiple targets and multiple pathways through syndrome differentiation. Astragalus membranacus, a traditional Chinese medicine, is a kind of medicine that benefits Qi and blood circulation and removes evil spirits. It has the functions of improving myocardial energy metabolism and hemodynamics, protecting myocardial muscle, and promoting angiogenesis. Astragalus membranaceus is often used to treat patients with heart failure, yielding remarkable results. In recent years, it has been found that astragaloside, Astragalus polysaccharide, quercetin, calyx isoflavones, and other main active ingredients of Astragalus membranacus can improve cardiac function and treat heart failure by inhibiting inflammatory response, myocardial apoptosis, and myocardial fibrosis. This paper reviewed the research progress of the action and mechanism of the active ingredients of Astragalus membranacus in the treatment of heart failure by studying relevant literature, with a view to providing a reference for its further research, development, and application in the prevention and treatment of heart failure.

5.
China Journal of Chinese Materia Medica ; (24): 5271-5277, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008724

RESUMO

This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.


Assuntos
Ratos , Animais , Células PC12 , Proteínas Proto-Oncogênicas c-akt/genética , Glucose/uso terapêutico , Oxigênio/metabolismo , Proteína Beclina-1/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico
6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 144-149, 2023.
Artigo em Chinês | WPRIM | ID: wpr-960917

RESUMO

ObjectiveTo investigate effect of astragaloside Ⅳ on the proliferation, migration, and invasion of colorectal cancer HCT116 cells and the underlying molecular mechanism. MethodColorectal cancer HCT116 cells were classified into blank group (DMSO) and low-dose (15.7 mg·L-1), medium-dose (31.4 mg·L-1), and high-dose (62.8 mg·L-1) astragaloside Ⅳ groups. After drug treatment, the morphological changes of HCT116 cells were observed under an inverted microscope. Cell viability was detected by cell counting kit-8 (CCK-8) assay, and the migration and invasion of cells were detected based on scratch assay and Transwell assay. The expression of cyclin-dependent kinase inhibitor (p21), CyclinD1, B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) in the cells was examined by Western blot. ResultCompared with the blank group, cells in the three astragaloside Ⅳ groups demonstrated slow growth, low density, inconsistent morphology, nuclear shrinkage, degradation of cytoplasm, and high death rate. Moreover, cell viability decreased in a concentration-dependent manner in the astragaloside Ⅳ groups. Cell migration and invasion were inhibited (P<0.05, P<0.01), and the inhibition rate was in positive correlation with the concentration of the astragaloside Ⅳ. The expression of pro-apoptotic protein Bax in low-dose, medium-dose and high-dose astragaloside Ⅳ groups increased gradually in a concentration-dependent manner, while the expression of p21, CyclinD1 and anti-apoptotic protein Bcl-2 decreased gradually in a concentration-dependent manner compared with those in the blank group (P<0.05, P<0.01). ConclusionAstragaloside Ⅳ can suppress the proliferation, migration, and invasion of colorectal cancer HCT116 cells and promote the apoptosis, thus inhibiting the occurrence and development of colorectal cancer.

7.
China Journal of Chinese Materia Medica ; (24): 672-680, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970536

RESUMO

This study screened excellent carriers for co-loading tanshinone Ⅱ_A(TSA) and astragaloside Ⅳ(As) to construct antitumor nano-drug delivery systems for TSA and As. TSA-As microemulsions(TSA-As-MEs) were prepared by water titration. TSA-As metal-organic framework(MOF) nano-delivery system was prepared by loading TSA and As in MOF by the hydrothermal method. Dynamic light scattering(DLS), transmission electron microscopy(TEM), and scanning electron microscopy(SEM) were used to characterize the physicochemical properties of the two preparations. Drug loading was determined by HPLC and the effects of the two preparations on the proliferation of vascular endothelial cells, T lymphocytes, and hepatocellular carcinoma cells were detected by the CCK-8 method. The results showed that the particle size, Zeta potential, and drug loading of TSA-As-MEs were(47.69±0.71) nm,(-14.70±0.49) mV, and(0.22±0.01)%, while those of TSA-As-MOF were(258.3±25.2) nm,(-42.30 ± 1.27) mV, and 15.35%±0.01%. TSA-As-MOF was superior to TSA-As-MEs in drug loading, which could inhibit the proliferation of bEnd.3 cells at a lower concentration and improve the proliferation ability of CTLL-2 cells significantly. Therefore, MOF was preferred as an excellent carrier for TSA and As co-loading.


Assuntos
Camundongos , Animais , Células Endoteliais , Abietanos , Linhagem Celular
8.
Chinese journal of integrative medicine ; (12): 626-633, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982307

RESUMO

OBJECTIVE@#To explore the cardioprotective effects of astragaloside IV (AS-IV) in heart failure (HF).@*METHODS@#PubMed, Excerpta Medica Database (EMBASE), Cochrane Library, Web of Science, Wanfang Database, Chinese Bio-medical Literature and Retrieval System (SinoMed), China Science and Technology Journal Database (VIP), and China National Knowledge Infrastructure (CNKI) were searched from inception to November 1, 2021 for animal experiments to explore AS-IV in treating HF in rats or mice. The left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD), left ventricular weight-to-body weight (LVW/BW) and B-type brain natriuretic peptide (BNP) were recorded. The qualities of included studies were assessed by the risk of bias according to the Cochrane handbook. Meta-analysis was performed using Stata 13.0.@*RESULTS@#Twenty-one articles involving 558 animals were considered. Compared with the control group, AS-IV improved cardiac function, specifically by increasing LVEF (mean difference (MD)=6.97, 95% confidence interval (CI)=5.92 to 8.03, P<0.05; fixed effects model) and LVFS (MD=7.01, 95% CI=5.84 to 8.81, P<0.05; fixed effects model), and decreasing LVEDD (MD=-4.24, 95% CI=-4.74 to -3.76, P<0.05; random effects model) and LVESD (MD=-4.18, 95% CI=-5.26 to -3.10, P<0.05; fixed effects model). In addition, the BNP and LVW/BW levels were decreased in the AS-IV treatment group (MD=-9.18, 95% CI=-14.13 to -4.22, P<0.05; random effects model; MD=-1.91, 95% CI=-2.42 to -1.39, P<0.05; random effects model).@*CONCLUSIONS@#AS-IV is a promising therapeutic agent for HF. However, this conclusion needs to be clinically validated in the future.


Assuntos
Animais , Camundongos , Ratos , Volume Sistólico , Função Ventricular Esquerda , Insuficiência Cardíaca/tratamento farmacológico , Peptídeo Natriurético Encefálico
9.
Journal of Pharmaceutical Practice ; (6): 662-665, 2023.
Artigo em Chinês | WPRIM | ID: wpr-998503

RESUMO

Objective To establish the method of thin layer chromatography (TLC) for identification and quantitative determination of Shipi Xiaoshui gel plaster. Methods TLC was adopted to qualitatively identify astragalus radix, plantaginis semen, curcumae rhizome, cinnamomi ramulus, polyporus umbellatus and akebia quinata. UPLC-MS was used to determine the content of astragaloside Ⅳ. Results TLC spots were clear and well-separated; RSDs of precision, reproducibility and stability tests were all lower than 3%, the linear range of astragaloside Ⅳ was 2.75-33 μg/ml (r=0.999 9, n=6), and the average recovery was 100.49% (RSD=1.98%, n=6). Conclusion The established method in this study is accurate, reliable and specific, which could be used for the quality control of Shipi Xiaoshui gel plaster.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 113-121, 2023.
Artigo em Chinês | WPRIM | ID: wpr-998169

RESUMO

ObjectiveTo investigate the effect and underlying molecular mechanism of astragaloside-Ⅳ (AS-Ⅳ) on autophagy and apoptosis of nasopharyngeal carcinoma cells. MethodIn experiments in vitro, the effect of AS-Ⅳ on the autophagy of nasopharyngeal carcinoma cells was observed by monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM). In experiments in vivo, immunofluorescence (IF) and Western blot were used to detect the changes in autophagy and apoptosis and the expression of key proteins in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway after the establishment of a xenograft tumor model in nude mice. ResultAfter 5-8F cells were treated with AS-Ⅳ of different doses (5, 10, 20 μmol·L-1), the fluorescence intensity of autophagy in AS-Ⅳ groups significantly increased as compared with that in the blank group. The fluorescence expression of autophagy in AS-Ⅳ groups was the strongest after intervention for 24 hours, and the fluorescence expression in the 10 μmol·L-1 AS-Ⅳ group was the most obvious. The autophagy activator rapamycin (RAPA) induced more autophagosomes in 5-8F cells under the transmission electron microscope, and 3-methyladenine (3-MA), an autophagy inhibitor, did not induce autophagosome formation in 5-8F cells under the transmission electron microscope as compared with the results in the blank group. In the 10 μmol·L-1 AS-Ⅳ group, the intracellular structure and cell membrane were intact and clear, and autophagosome formation was observed. Compared with the blank group, the AS-Ⅳ groups showed inhibited tumor volume (P<0.05, P<0.01), potentiated fluorescence signals of microtubule-associated protein l light chain 3 type Ⅱ/microtubule-associated protein l light chain 3 type Ⅰ (LC3 Ⅱ/Ⅰ) and cleaved Caspase-3 (P<0.05, P<0.01), increased expression levels of the mammalian homolog of yeast ATG6 (Beclin-1), LC3 Ⅱ/Ⅰ, cleaved Caspase-3, and cleaved PARP (P<0.05, P<0.01), down-regulated expression of ubiquitin-binding protein (p62) (P<0.05, P<0.01), and reduced protein expression levels of phosphorylated PI3K (p-PI3K), phosphorylated Akt (p-Akt), and phosphorylated mTOR (p-mTOR) (P<0.05, P<0.01). ConclusionAS-Ⅳ can induce autophagy and apoptosis of nasopharyngeal carcinoma cells, and the mechanism is presumably attributed to the activation of the PI3K/Akt/mTOR signaling pathway.

11.
Chinese Journal of Geriatrics ; (12): 341-346, 2023.
Artigo em Chinês | WPRIM | ID: wpr-993818

RESUMO

Objective:To investigate the effect of Astragaloside Ⅳ on high glucose-induced cardiomyocyte pyroptosis.Methods:H9c2 cells were cultured in vitro and divided into control group(5.5 mmol/L glucose), high glucose group(33.3 mmol/L glucose), Astragaloside Ⅳ group(33.3 mmol/L glucose+ 100μmol/L Astragaloside Ⅳ), and NLRP3 inhibitor group(33.3 mmol/L glucose+ 1μmol/L MCC950). Cell counting kit 8(CCK-8)was used to detect the activity of H9c2 cells.Lactate dehydrogenase(LDH)kit was used to detect the content of LDH in cell supernatant.Superoxide anion fluorescent probe(DHE)was used to detect the level of intracellular reactive oxygen species(ROS). Real-time fluorescence quantitative polymerase chain reaction(RT-qPCR)and Western blot were used to detect the mRNA and protein expression levels of pyroptosis-related genes.Immunofluorescence was used to detect the fluorescence intensity of NLRP3.Enzyme-linked immunosorbent assay(ELISA)was used to detect the level of inflammatory factors in cell supernatant.Results:When the concentration of Astragaloside Ⅳ was 100 μmol/L, it could significantly inhibit the decrease of cardiomyocyte viability induced by high glucose( P<0.01)and reduce LDH release( P<0.01). Compared with the control group, the level of ROS was increased( P<0.01), the mRNA and protein expressions of pyroptosis-related molecules were up-regulated( P<0.01 for all), the fluorescence intensity of NLRP3 was increased( P<0.01), and the levels of inflammatory factors in the cell supernatant were increased in the high glucose group( P<0.01). Compared with the high glucose group, the ROS level was decreased( P<0.01), the mRNA and protein expressions of pyroptosis-related molecules were down-regulated( P<0.05 or P<0.01), the fluorescence intensity of NLRP3 was decreased( P<0.01), and the levels of inflammatory factors in cell supernatant were decreased( P<0.05 or P<0.01)in Astragaloside Ⅳ group and inhibitor group. Conclusions:Astragaloside Ⅳ plays a protective role in high glucose-induced cardiomyocyte injury by inhibiting NLRP3/Caspase-1 signaling pathway and inhibiting pyroptosis.Moreover, it can improve the anti-inflammatory and antioxidant properties in cell models.

12.
International Journal of Traditional Chinese Medicine ; (6): 868-874, 2023.
Artigo em Chinês | WPRIM | ID: wpr-989714

RESUMO

Objective:To compare the quality of Astragali Radix at different harvest time; To revise the content determination indexes of Astragali Radix in Chinese Pharmacopoeia. Methods:An Agilent Eclipse XDB-C18 column (4.6 mm × 150 mm, 5 μm) was used for the determination of saponins with acetonitrile-water solution as mobile phase in a gradient mode. The drift tube temperature of ELSD was 60 ℃; the pressure was 30 psi; the gain was 800 ℃; the flow rate was 1.0 ml/min; the column temperature was 30 ℃; the injection volume was 20 μl; the acetonitrile-0.2% formic acid solution was used as mobile phase for the determination of flavonoids in a gradient mode; the flow rate was 1.0 ml/min; the detection wavelength was 260 nm; the column temperature was 30 ℃; the 10 μl was injected. The limited range as an indicator for determining Astragali Radix content was determined by investigating the extraction method and extraction time of Astragaloside Ⅰ and detecting the content of Astragaloside Ⅰ in 12 batches of Astragali Radix from different origins. The moisture, total ash, and water-soluble extracts in Astragali Radix were determined according to the drying method, total ash determination method, and cold soaking method in the four parts of Chinese Pharmacopoeia (2020 edition), respectively. Results:The content of total saponins in Astragali Radix harvested in spring and autumn in different origins was not significantly different, but the content of total flavonoids was significantly different. Except for H11, the content of Astragaloside Ⅰ in the other batches of Astragali Radix was ≥ 0.05%, so the content limit of Astragaloside Ⅰ was proposed to be≥0.05%. The results of moisture, total ash and water-soluble extracts in the 12 batches of Astragali Radix all meet the requirements in the Chinese Pharmacopoeia. Conclusions:Astragali Radix harvested in autumn is with higher content of active components and better quality. At the same time, this study can provide a reference that the new version of Chinese Pharmacopoeia can revise the Astragaloside Ⅳ in the content determination index of Astragali Radix to Astragaloside Ⅰ .

13.
Journal of Pharmaceutical Practice ; (6): 478-484, 2023.
Artigo em Chinês | WPRIM | ID: wpr-984556

RESUMO

Objective To investigate the effect and mechanism of astragaloside Ⅳ(AS-Ⅳ) activating ROCK/JNK to regulate autophagy in improving isoproterenol (ISO) induced myocardial fibrosis (MF) in mice. Methods The mice were randomly divided into control operation group (Control group), ISO induced myocardial fibrosis group (MF group), AS-Ⅳ treatment group (AS-Ⅳ group) and combination group of astragaloside IV and Y-33075 (ROCK inhibitor) (astragaloside IV+Y-33075 group). After repeated administration for 30 days. The serum levels of LDH, BNP, CTGF in each group were detected. The cardiac function was detected by ultrasound. Myocardial structure and tissue fibrosis degree in each group were detected by Sirius Red and Masson staining. Oxidative stress (ROS) levels in myocardial tissue of each group were detected by DHE staining and the expression of ROCK, JNK, Atg5, Beclin 1, and LC3 Ⅰ/Ⅱ in myocardial tissue were detected by Western blotting. Results Compared with AS-Ⅳ group, the EF value of AS-Ⅳ+Y-33075 group decreased and the degree of myocardial fibrosis increased (P<0.05). The serum level of LDH, BNP, CTGF increased and the level of ROS in myocardial tissue increased while the expression of ROCK, JNK, Atg5, Beclin 1, LC3 Ⅰ/Ⅱ decreased (P<0.05). Y-33075 could block the protective effect of AS-Ⅳ on myocardial injury induced by MF and inhibit the regulation of AS-Ⅳ on ROCK and JNK. Conclusion AS-Ⅳ could attenuate myocardial fibrosis in mice by activating ROCK/JNK signal and promoting autophagy.

14.
Chinese Pharmacological Bulletin ; (12): 1450-1456, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013735

RESUMO

Aim To explore the effect of astragaloside IV (AS-IV) on cell proliferation and collagen expression in cardiac fibroblasts (CFs) of rats induced with angiotensin II (Ang II) and its mechanism. Methods CFs were pretreated with short-chain acyl-CoA dehydrogenase (SCAD) siRNA1186 for 12 h and then co-treated with Ang TJ and AS-IV for 36 h. The expressions of SCAD, α-SMA, collagen I and collagen III in CFs were detected by Western blot. mRNA expression levels of SCAD, a-SMA, collagen I and collagen III in CFs were detected by quantitative real-time PCR. The SCAD enzymatic activity, the content of ATP, hydroxyproline and free fatty acid were measured by detection kits. Results The expression of α-SMA, collagen I and collagen III were up-regulated (all P < 0. 01) in CFs induced by Ang II compared with the control cells, and the expression and enzymatic activity of SCAD significantly decreased (P < 0. 01, P< 0. 05). The content of ATP decreased (P < 0.01), and the content of hydroxyproline and free fatty acids increased (all P < 0.01). Compared with Ang II group, SCAD expression and enzymatic activity, and ATP content were significantly increased (all P < 0.01) in Ang II + AS-TV group, but the content of hydroxyproline and free fatty acids, and the expression of α-SMA, collagen I and collagen III significantly decreased (all P < 0.01). However, compared with the Ang II + NC group, there was no significant difference in all indices in the Ang II + SiRNA1186 + AS-TV group. The protective effect of AS-TV on Ang II -induced cell proliferation and collagen expression in CFs was eliminated by the interference of SCAD SiRNA1186. Conclusions AS-IV may inhibit Ang II-induced cell proliferation and collagen expression in CFs by activating SCAD.

15.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 135-141, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1005513

RESUMO

【Objective】 To investigate the protection of astragaloside IV from high glucose induced podocyte injury and mitochondrial dysfunction and its molecular mechanisms. 【Methods】 The model of podocyte injury induced by high glucose (30 mmol/L glucose) was established, and the model cells were treated with low, medium and high doses of astragaloside IV respectively; cell activity was detected by CCK-8. Apoptosis was detected by TUNEL staining. Mitochondrial membrane potential was detected by JC-1 fluorescence probe. ATP content was detected by the kit. The expression levels of apoptosis and podocyte injury related proteins and Notch pathway related proteins were detected by Western blotting. 【Results】 Compared with the control group, cell activity was decreased, apoptosis level was increased (P<0.05), anti-apoptotic protein (Bcl2) expression was decreased, and apoptosis protein (Bax, cleaved-caspase 9, cleaved-caspase 3) expressions were increased (all P<0.05) in HG group. Compared with HG group, HG+AS-IV improved cell activity and apoptosis level induced by high glucose (P<0.05), increased expression of anti-apoptotic protein (Bcl2), and decreased expressions of apoptotic protein (Bax, cleaved-caspase 9, and cleaved-caspase 3) (all P<0.05). Compared with the control group, mitochondrial dysfunction occurred in HG group, JC-1 monomer content increased, and ATP content decreased (all P<0.05). Compared with HG group, HG+AS-IV improved mitochondrial dysfunction, increased JC-1 polymer content and ATP content (P<0.05). In addition, compared with the control group, the expression of Notch pathway-related protein was decreased in HG group (P<0.05). Compared with HG group, Notch pathway-related protein expression was increased in HG+AS-IV group (all P<0.05). Molecular docking results showed that AS-IV could bind Notch1. 【Conclusion】 Astragaloside IV can improve podocyte injury and mitochondrial dysfunction induced by high glucose, possibly by inhibiting Notch pathway activation.

16.
Braz. j. med. biol. res ; 56: e12203, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447682

RESUMO

Astragaloside IV is a biologically active substance derived from the traditional Chinese medicine Astragalus mambranaceus Bunge, and has antioxidant, anti-inflammatory, and anti-apoptotic properties. In this study, we aimed to investigate the effects of astragaloside IV on Klebsiella pneumonia rats and the underlying mechanisms. Klebsiella pneumoniae (K. pneumoniae) rats were treated with different dosages of astragaloside IV (5, 10, and 20 mg/kg) by intragastric administration. The levels of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) were determined. Pathological changes of lung tissue were inspected by HE staining. The expression of transforming growth factor (TGF)-β1 in lung tissue was determined with immunohistochemistry, and the expression levels of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3, IκBα/p-IκBα, and p65/p-p65 in lung tissue were determined by western blot. The mechanism was further investigated with TGF-β1 inhibitor SB-431542. Astragaloside IV reduced the elevated levels of pro-inflammatory cytokines caused by K. pneumoniae and improved lung tissue damage in a dose-dependent manner. Astragaloside IV also decreased the expression of TGF-β1/Smad signaling pathway-related proteins and decreased the protein levels of inflammation-related p-IκBα and p65 in lung tissues induced by K. pneumoniae. Additionally, it was found that the effects of 20 mg/kg astragaloside IV were similar to SB-431542, which could improve pulmonary fibrosis induced by K. pneumoniae, decrease the levels of TGF-β1/Smad signaling pathway-related proteins in lung, and reduce inflammation at the same time. Astragaloside IV could alleviate the inflammation of rat pneumonia induced by K. pneumoniae through suppressing the TGF-β1/Smad pathway.

17.
China Journal of Chinese Materia Medica ; (24): 1754-1764, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928172

RESUMO

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-β-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Assuntos
Astrágalo , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides , Raízes de Plantas
18.
China Journal of Chinese Materia Medica ; (24): 492-498, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927994

RESUMO

This study explores the regulatory effect of astragaloside Ⅳ on miR-17-5 p and its downstream proprotein convertase subtillisin/kexin type 9(PCSK9)/very low density lipoprotein receptor(VLDLR) signal pathway, aiming at elucidating the mechanism of astragaloside Ⅳ against atherosclerosis(AS). In cell experiment, oxidized low-density lipoprotein(ox-LDL) was used for endothelial cell injury modeling with vascular smooth muscle cells(VSMCs). Then cells were classified into the model group, miR-17-5 p inhibitor group, blank serum group, and astragaloside Ⅳ-containing serum group based on the invention. Afterward, cell viability and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA and protein in cells in each group were detected. In animal experiment, 15 C57 BL/6 mice were used as the control group, and 45 ApoE~(-/-) mice were classified into the model group, miR-17-5 p inhibitor group, and astragaloside Ⅳ group, with 15 mice in each group. After 8 weeks of intervention, the peripheral serum levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α), and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA in the aorta of mice were detected. The pathological changes of mice in each group were observed. According to the cell experiment, VSMC viability in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was higher than that in the model group(P<0.05). The mRNA and protein expression of miR-17-5 p and VLDLR in VSMCs in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was lower than that in the model group(P<0.05), but the mRNA and protein expression of PCSK9 was higher than that in the model group(P<0.05). As for the animal experiment, the levels of IL-6 and TNF-α in the peripheral serum of the miR-17-5 p inhibitor group and the astragaloside Ⅳ group were lower(P<0.05) and the serum level of IL-10 was higher(P<0.05) than that of the model group. The mRNA expression of miR-17-5 p and VLDLR in the aorta in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group was lower(P<0.05), and PCSK9 mRNA expression was higher(P<0.05) than that in the model group. Pathological observation showed mild AS in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group. In summary, astragaloside Ⅳ can prevent the occurrence and development of AS. The mechanism is that it performs targeted regulation of miR-17-5 p, further affecting the PCSK9/VLDLR signal pathway, inhibiting vascular inflammation, and thus alleviating endothelial cell injury.


Assuntos
Animais , Camundongos , Aterosclerose/genética , Lipoproteínas LDL/metabolismo , MicroRNAs/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Saponinas , Transdução de Sinais , Triterpenos
19.
China Journal of Chinese Materia Medica ; (24): 469-475, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927991

RESUMO

This study aimed to investigate the anti-inflammatory effect of astragaloside Ⅳ in mice with ulcerative colitis(UC) and its effect on the percentage of peripheral blood T helper(Th17) cells. Following the establishment of UC mouse model with 2% sodium dextran sulfate(DSS), mice in the positive control group and low-and high-dose astragaloside Ⅳ groups were treated with corresponding drugs by gavage. Disease activity index(DAI) was calculated, and serum interleukin-17(IL-17), tumor necrosis factor-α(TNF-α), and transforming growth factor-β(TGF-β) levels were assayed by ELISA. The pathological changes in colon tissue were observed by HE staining, and Th17/regulatory T cells(Treg) ratio in the peripheral blood was determined by flow cytometry. Western blot was conducted for detecting the relative protein expression levels of forkhead box protein P3(Foxp3) and retinoic acid-related orphan nuclear receptor γT(ROR-γt). The findings demonstrated that in normal mice, the colonic structure was intact. The goblet cells were not reduced and the glands were neatly arranged, with no mucosal erosion, bleeding, or positive cell infiltration. In the model group, the colonic mucosal structure was seriously damaged, manifested as disordered arrangement or missing of glands, vascular dilatation, congestion, and massive inflammatory cell infiltration. The pathological injury of colon tissue was alleviated to varying degrees in drug treatment groups. Compared with the normal group, the model group exhibited elevated percentage of Th17 cells, increased IL-17 and TNF-α content, up-regulated relative ROR-γt protein expression, lowered TGF-β, reduced percentage of Treg cells, and down-regulated relative Foxp3 protein expression. The comparison with the model group showed that DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, and relative ROR-γt protein expression in the positive control group, low-dose astragaloside Ⅳ group, and high-dose astragaloside Ⅳ group were decreased, while TGF-β content, percentage of Treg cells, and relative Foxp3 protein expression were increased. The DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, and relative ROR-γt protein expression in the low-dose astragaloside Ⅳ group were higher than those in the positive control group, whereas the content of TGF-β, percentage of Treg cells, and relative Foxp3 protein expression were lower. DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, relative ROR-γt protein expression in the high-dose astragaloside Ⅳ group declined in contrast to those in the low-dose astragaloside Ⅳ group, while the TGF-β content, percentage of Treg cells, and relative Foxp3 protein expression rose. There was no significant difference between the positive control group and the high-dose astragaloside Ⅳ group. Astragaloside Ⅳ is able to inhibit inflammatory response and diminish the percentage of Th17 cells in mice with UC.


Assuntos
Animais , Camundongos , Colite Ulcerativa/metabolismo , Saponinas/farmacologia , Linfócitos T Reguladores , Células Th17 , Triterpenos/farmacologia
20.
Cancer Research on Prevention and Treatment ; (12): 655-661, 2022.
Artigo em Chinês | WPRIM | ID: wpr-986563

RESUMO

Objective To reveal the mechanism of action of AS-Ⅳ on HepG2 cells based on molecular dynamics simulation and experimental evaluation. Methods We constructed a "drug-disease" network pharmacological map, analyzed the core genes of astragaloside Ⅳ (AS-Ⅳ) in HCC, screened key signaling pathways, and established a "drug-target" molecular dynamics model. In vitro assay was used to detect migration, proliferation and invasion abilities. Flow cytometry and qRT-PCR were used to detect the effect of AS-Ⅳ on the cell cycle and apoptosis, and the expression of core gene of HepG2. Results The core target of AS-Ⅳ acting on HCC was VEGFA. Compared with the control group, the high concentration of AS-Ⅳ significantly inhibited the migration, invasion and proliferation of HepG2 cells, blocked the metastasis of HepG2 cells from G1 to G2 phase, promoted their apoptosis, down-regulated VEGFA expression and up-regulated TGF-β1 expression. Conclusion AS-Ⅳ may inhibit the proliferation of hepatocellular carcinoma cells through multi-target and multi-pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA