Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biota Neotrop. (Online, Ed. ingl.) ; 21(2): e20201172, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1180715

RESUMO

Abstract: Recent statements from the Brazilian federal government indicate that impacting economic activities, particularly commercial shrimp farming, are being encouraged in mangrove areas in the near future. Alterations of the National Action Plan and legal instruments that partially protected mangrove ecosystems have created an even weaker legal framework than previously existed. Such changes are leading Brazil far from the global call to conserve mangroves and from the Aichi targets and United Nations Sustainable Development Goals. Unfortunately, the loss of mangrove ecosystems and their ecosystem services will negatively impact living standards for Brazilians in coastal areas.


Resumo: As recentes determinações do governo Brasileiro indicam que atividades econômicas impactantes para os manguezais, particularmente a carcinocultura, serão incentivadas num futuro próximo. Alterações no Plano de Ação Nacional e em outros instrumentos legais, que parcialmente protegiam os manguezais, fragilizaram ainda mais os meios legais para proteção dessas áreas. Essas mudanças fazem o Brasil seguir na contra-mão da demanda global pela conservação dos manguezais e dos objetivos de desenvolvimento sustentável traçados pela Organização das Nações Unidas, bem como das metas de Aichi para a biodiversidade. Consequentemente, a iminente perda dos ecossistemas de manguezais impactará negativamente o padrão de vida dos Brasileiros que vivem em áreas costeiras.

2.
Artigo | IMSEAR | ID: sea-204814

RESUMO

Many recent climate panels and committees have predicted a one and a half (1.5°C) to two degrees (2°C) Celsius as an achievable global limit to climate change [1]. Instead, this review has found that observationally informed projections of climate science underlying climate change offer a different outlook for the most likely outcome for 2100 of five to six-degree (5-6°C) increase as “most accurate” with regard to present trends, climate history and models [2]. The most significant result from the review is a quantitative, linear global temperature link to carbon dioxide levels, which has a short temporal feedback loop. The Vostok ice core temperature and CO2 values for the past 420,000 years, with sea level estimates have produced “Hansen’s Graph” [3]. Analysis results in an equation for global average temperature change and an indebted sea level rise, from any CO2 change. The best-performing climate change models and observational analysis project more warming than the average model often relied upon [4]. World atmosphere, temperature, and sea level trends for 2100 and beyond are examined. A CO2 experimental analysis proves its dramatic heat-entrapment versus air which relates to the global atmospheric system. Policy-relevant climate adaptation, including carbon capture, positive individual action, zero and negative emissions are reviewed, including Hansen (1988) projected temperature increase for 2019.

3.
Rev. biol. trop ; Rev. biol. trop;67(4)sept. 2019.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1507557

RESUMO

El aumento de las emisiones de Gases de Efecto Invernadero (GEI) derivadas de las actividades humanas, son consideradas el principal responsable del cambio climático actual y el sector ganadero es responsable del 18 % de las emisiones de GEI en CO2 equivalente. El pasto kikuyo puede optimizar tanto la captura como la fijación del carbono. El objetivo del trabajo fue identificar las existencias de carbono en el pasto kikuyo en sus diferentes compartimentos, biomasa aérea (BA) y biomasa radicular (BR), a 20 y 40 cm de profundidad del suelo, bajo los sistemas tradicional y silvopastoril en diferentes relieves. Se realizaron seis muestreos (M) sucesivos de acuerdo al sistema de pastoreo (tradicional y silvopastoril), la geoforma del terreno (flanco cóncavo (FCC), flanco convexo (FCX), flanco rectilíneo (FR) y relieve plano (RP)). Se muestrearon la biomasa aérea (BA) y de raíces (BR). El método estadístico utilizado fue un diseño en bloques incompletos aleatorizados, se evaluaron dos tratamientos (T) (T1: tradicional y T2: silvopastoril) con cuatro bloques (B) en cada uno (B1: FCC, B2: FCX, B3: FR, B4: RP). El trabajo se realizó entre junio 2016 y junio 2017 en San Pedro de los Milagros, Antioquia Colombia. Los resultados permitieron determinar que las raíces a 20 cm de profundidad, el colchón muerto y las hojas, fueron los compartimentos con mayores existencias de carbono (4.52, 3.58 y 1.9 ton de C ha-1 respectivamente). Se encontraron diferencias (P < 0.05) entre relieve plano y el relieve rectilíneo para la biomasa de hojas, y entre el relieve plano con los demás relieves evaluados para la variable raíces gruesas a 20 cm de profundidad. La biomasa producida por la planta es directamente proporcional al carbono incorporado. La biomasa radicular, tanto para raíces finas como gruesas, contribuye a capturar en promedio 2 820 y 655 kg ha-1 de carbono a 20 y 40 cm de profundidad respectivamente. El pasto kikuyo contribuye a mantener reservas de carbono en las praderas. Por la alta producción de biomasa radicular, de colchón y la alta capacidad de rebrote en condiciones adversas, se concluye que este pasto juega un papel importante en la disminución de GEI y la conservación de los suelos del trópico alto bajo sistemas de lechería especializada.


The increase of Greenhouse Gases (GHG) emissions derived from human activities are considered the main cause of current climate change and the livestock sector is responsible for 18 % of the GHG emissions in CO2 equivalent. Kikuyu grass can optimize both carbon capture and carbon fixation. The aim of this paper was to identify carbon stocks in the kikuyu grass in its different compartments, above-ground biomass (AB) and below-ground biomass (BB) at 20 and 40 cm soil depth, under the traditional and silvopastoral systems in different reliefs. Six successive samplings (M) were taken according to the grazing system (traditional and silvopastoral system), and the geoform of the terrain (concave flank (CCF), convex flank (CXF), rectilinear flank (RF) and flat relief (FR)). The above-ground biomass and below-ground biomass were sampled. The statistical method used was a design in incomplete randomized blocks, two treatments were evaluated (T) (T1: traditional system and T2: silvopastoral system) with four blocks (B) in each one (B1: CCF, B2: CXF, B3: RF, B4: FR). This experiment was done from June 2016 to June 2017 in San Pedro de los Milagros, Antioquia, Colombia. The results allowed to determine that the roots at 20 cm depth, the dead creeping stems, and the leaves were the compartments with the highest carbon stocks (4.52, 3.58 and 1.9 ton of C ha-1, respectively). Differences were found (P < 0.05) between flat and rectilinear relief for the biomass of leaves, and between the flat relief with the other reliefs evaluated for the variable thick roots at 20 cm depth. The biomass produced by the plant is directly proportional to the incorporated carbon. The root biomass, both fine and thick roots, contributes to capture on average 2 820 kg and 655 kg of carbon per hectare at of 20 and 40 cm depth respectively. Kikuyu grass contributes to keep carbon reserves in the grasslands. Due to the high production of below-ground biomass and creeping stems, and its high capacity of regrowth under adverse conditions, this grass plays an important role in the reduction of GHG and the conservation of high tropical soils under specialized dairy systems.

4.
Braz. arch. biol. technol ; Braz. arch. biol. technol;59(spe): e16160509, 2016. tab
Artigo em Inglês | LILACS | ID: lil-796854

RESUMO

ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

5.
Artigo em Inglês | IMSEAR | ID: sea-162694

RESUMO

Cement industry accounts for the second largest emitter of anthropogenic greenhouse gas in the globe with 900 kg CO2 emitted into the atmosphere from producing one tonne of cement. Hence, the effort made to mitigate this issue seems not productive , which gives rise to the design of the carbon capture and sequestration [CCS] process which is one of the few ways obtained to greatly reduce CO2 production from the cement plant. The research work assessed the technology used for the cement plant by employing an old cement plant with post-combustion CO2 capture using physical solvent (Selexol). The Aspen Hysys simulation results show that the process can capture 97% of the CO2 and lean loading of 0.37. The Ashaka Cement Plant operates at maximum capacity of approx. 1 million tonnes cement /year with CO2 released at about 500,000 tonnes per year. The capture unit was able to reduce the CO2 released into the atmosphere from 4.86% to 0.13%. The overall result of the analysis shows that selexol has proven to be thermally and chemically stable under the operating conditions used. It is recommended that, the simulation results should be retrofitted into the Ashaka cement plant, in order to determine the best CO2 capture efficiency, performance which results to the choice of this capture technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA