Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 650-658, 2019.
Artigo em Chinês | WPRIM | ID: wpr-856563

RESUMO

Objective: To summarize the effect of cartilage progenitor cells (CPCs) and microRNA-140 (miR-140) on the repair of osteoarthritic cartilage injury, and analyze their clinical prospects. Methods: The recent researches regarding the CPCs, miR-140, and repair of cartilage in osteoarthritis (OA) disease were extensively reviewed and summarized. Results: CPCs possess the characteristics of self-proliferation, expression of stem cell markers, and multi-lineage differentiation potential, and their chondrogenic ability is superior to other tissues-derived mesenchymal stem cells. CPCs are closely related to the development of OA, but the autonomic activation and chondrogenic ability of CPCs around the osteoarthritic cartilage lesion cannot meet the requirements of complete cartilage repair. miR-140 specifically express in cartilage, and has the potential to activate CPCs by inhibiting key molecules of Notch signaling pathway and enhance its chondrogenic ability, thus promoting the repair of osteoarthritic cartilage injury. Intra-articular delivery of drugs is one of the main methods of OA treatment, although intra-articular injection of miR-140 has a significant inhibitory effect on cartilage degeneration in rats, it also exhibit some limitations such as non-targeted aggregation, low bioavailability, and rapid clearance. So it is a good application prospect to construct a carrier with good safety, cartilage targeting, and high-efficiency for miR-140 based on articular cartilage characteristics. In addition, CPCs are mainly dispersed in the cartilage surface, while OA cartilage injury also begins from this layer, it is therefore essential to emphasize early intervention of OA. Conclusion: miR-140 has the potential to activate CPCs and promote the repair of cartilage injury in early OA, and it is of great clinical significance to further explore the role of miR-140 in OA etiology and to develop new OA treatment strategies based on miR-140.

2.
Tissue Engineering and Regenerative Medicine ; (6): 649-659, 2018.
Artigo em Inglês | WPRIM | ID: wpr-717538

RESUMO

BACKGROUND: Stem cell therapy requires a serum-free and/or chemically-defined medium for commercialization, but it is difficult to find one that supports long-term expansion of cells without compromising their stemness, particularly for novel stem cells. METHODS: In this study, we tested the efficiency of StemPro® MSC SFM Xeno Free (SFM-XF), a serum-free medium, for the long-term expansion of human fetal cartilage-derived progenitor cells (hFCPCs) from three donors in comparison to that of the conventional α-Modified Eagle's Medium (α-MEM) supplemented with 10% fetal bovine serum (FBS). RESULTS: We found that SFM-XF supported the expansion of hFCPCs for up to 28–30 passages without significant changes in the doubling time, while α-MEM with 10% FBS showed a rapid increase in doubling time at 10–18 passages depending on the donor. Senescence of hFCPCs was not observed until passage 10 in both media but was induced in approximately 15 and 25% of cells at passage 20 in SFM-XF and α-MEM with 10% FBS, respectively. The colony forming ability of hFCPCs in SFX-XF was also comparable to that in α-MEM with 10% FBS. hFCPCs expressed pluripotency genes like Oct-4, Sox-2, Nanog, SCF, and SSEA4 at passage 20 and 31 in SFM-XF; however, this was not observed when cells were cultured in α-MEM with 10% FBS. The ability of hFCPCs to differentiate into three mesodermal lineages decreased gradually in both media but it was less significant in SFM-XF. Finally we found no chromosomal abnormality after long-term culture of hFCPCs until passage 17 by karyotype analysis. CONCLUSION: These results suggest that SFM-XF supports the long-term expansion of hFCPCs without significant phenotypic and chromosomal changes. This study have also shown that hFCPCs can be mass-produced in vitro, proving their commercial value as a novel source for developing cell therapies.


Assuntos
Humanos , Envelhecimento , Cartilagem , Terapia Baseada em Transplante de Células e Tecidos , Aberrações Cromossômicas , Técnicas In Vitro , Cariótipo , Mesoderma , Células-Tronco , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA