Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 108-115, 2022.
Artigo em Chinês | WPRIM | ID: wpr-942335

RESUMO

Objective : To study the effect of temperature and light intensity on photosynthetic fluorescence parameters, volatile oil content, and growth of Atractylodes lancea and provide reference for the rational selection of cultivation environment for A. lancea. MethodWe determined the photosynthetic indexes (such as net photosynthetic rate, water use efficiency, and carboxylation rate), light response curve, CO2 response curve, fluorescence parameters, and the content of four volatile oils in A. lancea under two temperature treatments (32 °C and 22 °C) and two light treatments (full light and shade). ResultThe net photosynthetic rate and water use efficiency of A. lancea under high temperature + strong light were significantly higher than those under high temperature + weak light and low temperature + strong light. The ability of A. lancea to use weak light at low temperature was the strongest, while the utilization rate of weak light under strong light significantly reduced. The photosynthetic rate of A. lancea at low temperature was more susceptible to light intensity and CO2 concentration than that at high temperature. The maximum photosynthetic rate and apparent quantum efficiency under weak light were significantly higher than those under strong light. The photoreaction efficiency at high temperature was higher than that at low temperature. The total amount of volatile oil in A. lancea treated with high temperature + weak light was the highest, reaching 4.582%. Compared with high temperature + strong light, high temperature + weak light significantly increased the content of hinesol and β-eudesmol in A. lancea by 91.7% and 35.7%, respectively, and low temperature + strong light significantly increased the content of hinesol by 87.5%. The content of β-eudesmol in low temperature + weak light treatment was significantly lower than that in high temperature + weak light treatment. ConclusionTThe growth of A. lancea was affected by the interaction between temperature and light. The light and temperature conditions required for the accumulation of volatile oil were not consistent with those suitable for the growth and development of A. lancea. A. lancea responded to the changes of light and temperature conditions by regulating the synthesis and accumulation of volatile oil.

2.
China Journal of Chinese Materia Medica ; (24): 1305-1313, 2019.
Artigo em Chinês | WPRIM | ID: wpr-774555

RESUMO

As an important signal molecule, extracellular ATP(eATP) can regulate many physiological and biochemical responses to plant stress. In this study, the regulation of extracellular ATP(eATP) on chlorophyll content and chlorophyll fluorescence parameters of Angelica sinensis seedlings were studied under drought and low temperature stress. The results showed that all the chlorophyll content, the actual photochemical efficiency [Y(Ⅱ)], the electron transfer rate(ETR), the photochemical quenching coefficient(qP and qL) of A. sinensis leaves were significantly decreased under drought and low temperature stress, respectively. At the same time, non-photochemical quenching(NPQ and qN) were also all significantly increased, respectively. The application of eATP alleviated the decrease of chlorophyll content, Y(Ⅱ), ETR, qP and qL of A. sinensis leaves under drought and low temperature stress, and eliminated the increase of qN and NPQ. The results indicated that eATP could effectively increase the open ratio of PSⅡ reaction centers, and improve the electron transfer rate and light energy conversion efficiency of PSⅡ of A. sinensis leaves under drought and low temperature stress. It is beneficial to enhance the chlorophyll synthesis and the adaptability of PSⅡ about A. sinensis seedlings to drought and low temperature stress.


Assuntos
Trifosfato de Adenosina , Farmacologia , Angelica sinensis , Química , Fisiologia , Clorofila , Temperatura Baixa , Secas , Fluorescência , Fotossíntese , Folhas de Planta , Química , Plântula , Química , Fisiologia , Estresse Fisiológico , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA