Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 1650-1661, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771765

RESUMO

Para-aminobenzoate (PABA) is an important chemical for organic synthesis and extensively used in pharmaceutical and dye industry. In recent years, PABA has received increasing attention as a potential component of high-strength polymer. In Escherichia coli, three genes of pabA, pabB and pabC are responsible for PABA production from chorismate in folate synthetic pathway. However, E. coli does not accumulate or accumulates very few amounts of PABA under normal growth condition. In this study, the tyrosine-producing E. coli TYR002 constructed previously was used as the starting strain for developing PABA-producing strain. First, the activity of bifunctional chorismate mutase/prephenate dehydrogenase TyrA in E. coli TYR002 was weakened to reduce the production of tyrosine. Then, three different constitutive promoters were used to regulate the expression of pabA, pabB and pabC in recombinant plasmid which was transformed into E. coli for improving PABA production. The shake-flask fermentation showed that the different combination of constitutive promoters significantly affected the production of PABA, and the highest shake-flask fermentation titer was 0.67 g/L. After further condition optimization, the engineered E. coli produced 6.4 g/L PABA under 5 L fed-batch fermentation. This study could be a good reference for improving microbial production of PABA.


Assuntos
Ácido 4-Aminobenzoico , Escherichia coli , Plasmídeos
2.
Chinese Journal of Biotechnology ; (12): 1212-1223, 2016.
Artigo em Chinês | WPRIM | ID: wpr-310546

RESUMO

cis, cis-muconic acid (MA) is an important platform chemical. Now, majority of reported engineered strains are genetically instable, the exogenous genes are expressed under the control of expensive inducer and the components of their fermentation medium are complex, thus large-scale microbial production of MA is limited due to the lack of suitable strains. Hence, it is still necessary to construct novel high-performance strain that is genetically stable, no induction and grows in simple inorganic fermentation medium. In this study, after 3 exogenous genes (aroZ, aroY, catA) for biosynthesis of MA were integrated into previously constructed 3-hydroshikimate producing Escherichia coli WJ060 strain and combinatorially regulated with 3 constitutive promoters with different strengths, 27 engineered strains were constructed. The best engineered strain, E. coli MA30 could produce 1.7 g/L MA in the simple inorganic fermentation medium without induction. To further enhance the production capacity of MA, the mutant library of E. coli MA30 was constructed by genome replication engineering and screened via high-throughput assay. After two-round screening, the new strain, E. coli MA30-G2 with improved production of MA was obtained, and the titer of MA increased more than 8%. Under the condition of 5 L fed-batch fermentation, E. coli MA30-G2 could produce about 11.5 g/L MA. Combinatorial regulation and high-throughput screening provide important reference to microbial production of other bio-based chemicals.


Assuntos
Escherichia coli , Metabolismo , Fermentação , Microbiologia Industrial , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Regiões Promotoras Genéticas , Ácido Sórbico , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA