Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 2926-2938, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981241

RESUMO

Dracaena marginata is a widely cultivated horticultural plant in the world, which has high ornamental and medicinal value. In this study, the whole genome of leaves from D. marginata was sequenced by Illumina HiSeq 4000 platform. The chloroplast genome were assembled for functional annotation, sequence characteristics and phylogenetic analysis. The results showed that the chloroplast genome of D. marginata composed of four regions with a size of 154 926 bp, which was the smallest chloroplast genome reported for Dracaena species to date. A total of 132 genes were identified, including 86 coding genes, 38 tRNA genes and 8 rRNA genes. Codon bias analysis found that the codon usage bias was weak and there was a bias for using A/U base endings. 46 simple sequence repeat and 54 repeats loci were detected in the chloroplast genome, with the maximum detection rate in the large single copy region and inverted repeat region, respectively. The inverted repeats boundaries of D. marginata and Dracaena were highly conserved, whereas gene location differences occurred. Phylogenetic analysis revealed that D. serrulata and D. cinnabari form a monophyletic clade, which was the closest relationship and conformed to the morphological classification characteristics. The analysis of the chloroplast genome of D. marginata provides important data basis for species identification, genetic diversity and chloroplast genome engineering of Dracaena.


Assuntos
Filogenia , Dracaena , Genoma de Cloroplastos/genética , Sequência de Bases , Genes de Plantas
2.
Chinese Journal of Endemiology ; (6): 476-480, 2011.
Artigo em Chinês | WPRIM | ID: wpr-642946

RESUMO

Objective Measurement and analysis of the complete genome sequences of Yersinia Pestis from a new plague natural foci and adjacent foci in China, to know the genetic relationship among the epidemic strain isolated in Yulong (D 106004) and Jianchuan strains (D 182038) and the Tibetan strain ( Z 176003 ). Methods Three complete genome sequences were sequenced using the whole-genome shotgun and Solexa method and comparative genomics analysis was done among the three sequences. Genome comparative analysis among the coding sequences was done by BLAST software, SNPs finding was done by the program, genome rearrangements were analyzed using MAUVE software. Results All of the genomes of Yersinia pestis strains D182038, D106004 and Z176003 consist of a single circular chromosome and three virulence plasmids, pMT1, pCD1 and pPCP1. They had similar characteristics in chromosome and plasmid features, and there were no significant difference in coming sequence (CDS) of the cluster of orthologous groups of proteins (COG) functional classification and the number of insertion sequence in the three strains (x2 =3.03, 0.257, all P > 0.05). The comparative genomics results showed that the three bacteria had 2882 genes with 100% homology, of 3636 genes predicted in D106004, 2994 were identical with D182038's and 3113 with Z176003's, and of which 240 had 90% homology with D182038's and 200 with Z176003 's. Synonymous single nucleotide polymorphisms(sSNPs) were 59 and 68, and non-synonymous SNPs(nsSNPs) were 104 and 203 between strains D106004 and Z176003/D182038. There were 11 segments rearrangements between D106004 and Z176003, which was less than 16 segments rearrangements between D106004 and D182038. ConclusionsThe three strains are highly homologous, the Yulong strain has more similarity with Tibet strain than with Jianchuan strain, the strain from Yulong foci may be evolved from Tibet foci.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA