Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Neuroscience Bulletin ; (6): 759-773, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982421

RESUMO

The perception of motion is an important function of vision. Neural wiring diagrams for extracting directional information have been obtained by connectome reconstruction. Direction selectivity in Drosophila is thought to originate in T4/T5 neurons through integrating inputs with different temporal filtering properties. Through genetic screening based on synaptic distribution, we isolated a new type of TmY neuron, termed TmY-ds, that form reciprocal synaptic connections with T4/T5 neurons. Its neurites responded to grating motion along the four cardinal directions and showed a variety of direction selectivity. Intriguingly, its direction selectivity originated from temporal filtering neurons rather than T4/T5. Genetic silencing and activation experiments showed that TmY-ds neurons are functionally upstream of T4/T5. Our results suggest that direction selectivity is generated in a tripartite circuit formed among these three neurons-temporal filtering, TmY-ds, and T4/T5 neurons, in which TmY-ds plays a role in the enhancement of direction selectivity in T4/T5 neurons.


Assuntos
Animais , Neuritos , Drosophila , Neurônios , Conectoma
2.
Protein & Cell ; (12): 238-248, 2019.
Artigo em Inglês | WPRIM | ID: wpr-757914

RESUMO

Detection of moving objects is an essential skill for animals to hunt prey, recognize conspecifics and avoid predators. The zebrafish, as a vertebrate model, primarily uses its elaborate visual system to distinguish moving objects against background scenes. The optic tectum (OT) receives and integrates inputs from various types of retinal ganglion cells (RGCs), including direction-selective (DS) RGCs and size-selective RGCs, and is required for both prey capture and predator avoidance. However, it remains largely unknown how motion information is processed within the OT. Here we performed in vivo whole-cell recording and calcium imaging to investigate the role of superficial interneurons (SINs), a specific type of optic tectal neurons, in motion detection of larval zebrafish. SINs mainly receive excitatory synaptic inputs, exhibit transient ON- or OFF-type of responses evoked by light flashes, and possess a large receptive field (RF). One fifth of SINs are DS and classified into two subsets with separate preferred directions. Furthermore, SINs show size-dependent responses to moving dots. They are efficiently activated by moving objects but not static ones, capable of showing sustained responses to moving objects and having less visual adaptation than periventricular neurons (PVNs), the principal tectal cells. Behaviorally, ablation of SINs impairs prey capture, which requires local motion detection, but not global looming-evoked escape. Finally, starvation enhances the gain of SINs' motion responses while maintaining their size tuning and DS. These results indicate that SINs serve as a motion detector for sensing and localizing sized moving objects in the visual field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA