Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 1408-1420, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927789

RESUMO

Ergothioneine is a multifunctional physiological cytoprotector, with broad application in foods, beverage, medicine, cosmetics and so on. Biosynthesis is an increasingly favored method in the production of ergothioneine. This paper summarizes the new progress in the identification of key pathways, the mining of key enzymes, and the development of natural edible mushroom species and high-yield engineering strains for ergothioneine biosynthesis in recent years. Through this review, we aim to reveal the molecular mechanism of ergothioneine biosynthesis and then employ the methods of fermentation engineering, metabolic engineering, and synthetic biology to greatly increase the yield of ergothioneine.


Assuntos
Antioxidantes , Ergotioneína/metabolismo , Fermentação , Engenharia Metabólica
2.
Chinese Journal of Biotechnology ; (12): 796-806, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927745

RESUMO

Ergothioneine (ERG) is a natural antioxidant that has been widely used in the fields of food, medicine and cosmetics. Compared with traditional plant extraction and chemical synthesis approaches, microbial synthesis of ergothioneine has many advantages, such as the short production cycle and low cost, and thus has attracted intensive attention. In order to engineer an ergothioneine high-yielding Escherichia coli strain, the ergothioneine synthesis gene cluster egtABCDE from Mycobacterium smegmatis and egt1 from Schizosaccharomyces pombe were introduced into E. coli BL21(DE3) to generate a strain E1-A1 harboring the ergothioneine biosynthesis pathway. As a result, (95.58±3.2) mg/L ergothioneine was produced in flask cultures. To further increase ergothioneine yield, the relevant enzymes for biosynthesis of histidine, methionine, and cysteine, the three precursor amino acids of ergothioneine, were overexpressed. Individual overexpression of serAT410STOP and thrA resulted in an ergothioneine titer of (134.83±4.22) mg/L and (130.26±3.34) mg/L, respectively, while co-overexpression of serAT410STOP and thrA increased the production of ergothioneine to (144.97±5.40) mg/L. Eventually, by adopting a fed-batch fermentation strategy in 3 L fermenter, the optimized strain E1-A1-thrA-serA* produced 548.75 mg/L and 710.53 mg/L ergothioneine in glucose inorganic salt medium and rich medium, respectively.


Assuntos
Meios de Cultura , Ergotioneína/metabolismo , Escherichia coli/metabolismo , Fermentação , Histidina/metabolismo , Engenharia Metabólica
3.
Acta Pharmaceutica Sinica ; (12): 931-2016.
Artigo em Chinês | WPRIM | ID: wpr-779259

RESUMO

Human carnitine/organic cation transporter 1 and 2(hOCTN1 and hOCTN2) mediate transport of endogenous and exogenous compounds. The present study aimed to establish cell models with stable expression of hOCTN1 or hOCTN2 to study interactions with compounds and transporters. MDCK cells were transfected with pcDNA3.1(+) plasmid vector containing hOCTN1 or hOCTN2(pcDNA3.1(+)-hOCTN1/2), several stable transfected clones were obtained after G418 screening. hOCTN1 and hOCTN2 clones were screened with ergothioneine and mildronate respectively as substrates to identify the best candidates. We explored interactions of endogenous substances, alkaloids, flavonoids and ACEIs with hOCTN1/2. As a result, the cellular accumulation of ergothioneine in MDCK-hOCTN1 or mildronate in MDCK-hOCTN2 was 122 and 108 folds of the control cells, respectively. The kinetic parameters, Km and Vmax of ergothioneine, mediated by MDCK-hOCTN1, were 8.19±0.61 μmol·L-1 and 1427±49 pmol·mg-1(protein)·min-1; while Km and Vmax of mildronate by MDCKhOCTN2 were 52.3±4.3 μmol·L-1 and 2454±64 pmol·mg-1(protein)·min-1. Dopamine, glutamine, piperine, berberine, nuciferine, lisinopril and fosinopril could inhibit ergothioneine or mildronate uptake by MDCKhOCTN1/2. In conclusion, cell models with good stable hOCTN1 and hOCTN2 functions have been established successfully, which can be applied to the study of interactions between compounds and transporters of hOCTN1 and hOCTN2.

4.
Mycobiology ; : 43-47, 2009.
Artigo em Inglês | WPRIM | ID: wpr-729210

RESUMO

The levels of ergothioneine (ERG), which have been shown to act as an excellent antioxidant, were determined in both fruiting bodies and mycelia of various mushroom species. We found that ERG accumulated at different levels in fruiting bodies of mushrooms and showed up to a 92.3-fold difference between mushrooms. We also found that ERG accumulated at higher levels in mycelia than in fruiting bodies of economically important mushroom species such as Ganoderma neo-japonicum, G. applanatum and Paecilomyces tenuipes. The addition of 2 mM methionine (Met) to mycelial culture medium increased the ERG contents in most mushroom species tested, indicating that Met is a good additive to enhance the ERG levels in a variety of mushroom species. Taking these results into consideration, we suggest that the addition of Met to the mycelial culture medium is an efficient way to enhance the antioxidant properties in economically important mushroom species.


Assuntos
Agaricales , Ergotioneína , Frutas , Ganoderma , Metionina , Paecilomyces
5.
Experimental & Molecular Medicine ; : 20-22, 2001.
Artigo em Inglês | WPRIM | ID: wpr-31947

RESUMO

Ergothioneine is widely distributed in biological systems, particularly in red blood cells of animals. However, it's functional role in human body is not well understood. In order to investigate the biochemical effect of L-ergothioneine, its concentration changes in human blood with respect to ages in healthy individuals was first investigated. L-ergothioneine concentrations in the blood of Saudi males from western province at different stages of life were measured by the procedure of Carlsson et al., 1974. At early stages of life (1-10 years), the concentrations of LER is 1.5-2.0 mg/100 ml. It increases gradually at the age of 11-18 years where it reaches the maximum value of 3.7 mg/100 ml. Then, it declines gradually to 3.0-2.3 mg/ 100 ml during the period of 19-50 years. An increase in the level of LER (2.8 mg/100 ml) was seen at the age of 51+.


Assuntos
Adulto , Criança , Pré-Escolar , Humanos , Masculino , Adolescente , Fatores Etários , Ergotioneína/sangue , Eritrócitos/química , Pessoa de Meia-Idade , Arábia Saudita , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA