Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.259
Filtrar
1.
China Pharmacy ; (12): 801-806, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013540

RESUMO

OBJECTIVE To establish an HPLC fingerprint of Xiao’er resuqing oral liquid, and to determine the contents of twelve index components. METHODS HPLC method was adopted. The determination was performed on Venusil MP C18 column with mobile phase consisting of acetonitrile-0.1% phosphate aqueous solution (gradient elution) at a flow rate of 1.0 mL/min. The detection wavelength was set at 210 nm, the column temperature was 30 ℃, the injection volume was 10 μL. HPLC fingerprint of Xiao’er resuqing oral liquid was established by using the Similarity Evaluation System of Chromatographic Fingerprint of TCM (2012 edition) to evaluate the similarity. The contents of 12 components were determined, including (R, S)-goitrin, 3,5-O-dicaffeoyl quinic acid, puerarin, forsythin, forsythoside A, chlorogenic acid, baicalin, saikosaponins d, wogonoside, baicalein, emodin and chrysophanol. RESULTS The similarity of HPLC fingerprints of 13 batches of Xiao’er resuqing oral liquid was greater than 0.97, and 14 common peaks were confirmed. The contents of the above 12 index components in 13 batches of Xiao’er resuqing oral liquid were as follows: 0.078-0.172, 1.564-2.736, 1.338-2.578, 0.426-0.872, 1.477-2.628, 1.396-2.447, 4.052-9.146, 0.367- 0.692, 1.974-4.674, 1.274-2.969, 0.085-0.167 and 0.155-0.307 mg/mL. CONCLUSIONS The established HPLC fingerprint and content determination methods have high accuracy and high specificity, which can be used for the quality evaluation of Xiao’er resuqing oral liquid.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 125-131, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013368

RESUMO

ObjectiveTo improve the quality standard of Yuanhu Zhitong oral liquid in order to strengthen the quality control of this oral liquid. MethodThin layer chromatography(TLC) was used for the qualitative identification of Corydalis Rhizoma and Angelicae Dahuricae Radix in Yuanhu Zhitong oral liquid by taking tetrahydropalmatine, corydaline reference substances and Corydalis Rhizoma reference medicinal materials as reference, and cyclohexane-trichloromethane-methanol(5∶3∶0.5) as developing solvent, Corydalis Rhizoma was identified using GF254 glass thin layer plate under ultraviolet light(365 nm). And taking petroleum ether(60-90 ℃) -ether-formic acid(10∶10∶1) as developing solvent, Angelicae Dahuricae Radix was identified using a silica gel G TLC plate under ultraviolet light(305 nm). High performance liquid chromatography(HPLC) was performed on a Waters XSelect HSS T3 column(4.6 mm×250 mm, 5 μm) with acetonitrile(A)-0.1% glacial acetic acid solution(adjusted pH to 6.1 by triethylamine)(B) as the mobile phase for gradient elution(0-10 min, 20%-30%A; 10-25 min, 30%-40%A; 25-40 min, 40%-50%A; 40-60 min, 50%-60%A), the detection wavelength was set at 280 nm, then the fingerprint of Yuanhu Zhitong oral liquid was established, and the contents of tetrahydropalmatine and corydaline were determined. ResultIn the thin layer chromatograms, the corresponding spots of Yuanhu Zhitong oral liquid, the reference substances and reference medicinal materials were clear, with good separation and strong specificity. A total of 12 common peaks were identified in 10 batches of Yuanhu Zhitong oral liquid samples, and the peaks of berberine hydrochloride, dehydrocorydaline, glaucine, tetrahydropalmatine and corydaline. The similarities between the 10 batches of samples and the control fingerprint were all >0.90. The results of determination showed that the concentrations of corydaline and tetrahydropalmatine had good linearity with paek area in the range of 0.038 6-0.193 0, 0.034 0-0.170 0 g·L-1, respectively. The methodological investigation was qualified, and the contents of corydaline and tetrahydropalmatine in 10 batches of Yuanhu Zhitong oral liquid samples were 0.077 5-0.142 9、0.126 1-0.178 2 g·L-1, respectively. ConclusionThe established TLC, fingerprint and determination are simple, specific and reproducible, which can be used to improve the quality control standard of Yuanhu Zhitong oral liquid.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 161-168, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003778

RESUMO

ObjectiveTo investigate the material basis of homologous and heterogeneous effect of Aurantii Fructus Immaturus(AFI) and Aurantii Fructus(AF) based on the total statistical moment analysis and molecular connectivity index(MCI). MethodRelevant literature at home and abroad and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) were consulted to establish the chemical composition database of AFI and AF, and set up their fingerprints by ultra-high performance liquid chromatography(UPLC), and the total statistical moments and similarity parameters of the fingerprint were calculated. According to MCI, all components of AFI and AF were divided into different component groups, the average values of 0-8th order(0χ-8χ) MCI of the common component groups of AFI and AF were calculated. ResultThe values of total zero-order moment(AUCT) of AFI and AF were (10.57±2.45)×106, (5.09±0.89)×106 μV·s, the values of total first-order moment(MCRTT) were (11.57±1.58), (12.10±1.29) min, the values of total second-order moments(VCRTT) were(24.49±2.30), (26.49±2.54) min2, respectively. It showed that qualitative and quantitative parameters of AFI and AF were significantly different. The components with high similarity such as neohesperidin, hesperidin and narirutin were screened as the common potential pharmacodynamic components of AFI and AF. The non-common components of AFI, such as alysifolinone and imperatorin, and the non-common components of AF, such as neoeriocitrin and isosakuranin, with high similarity were screened out as potential heterogeneous components of AFI and AF. The composition groups of AFI and AF were classified into six categories, and the similarities between the composition groups of AFI and AF and the total constituents were 0.872-0.979 and 0.918-0.997, the average values of 0χ-8χ MCI of alkaloids in AFI and AF were 3.65 and 3.14, the average values of 0χ-8χ MCI of flavonoids were 8.47 and 8.47, the average values of 0χ-8χ MCI of volatile oils were 2.71 and 3.48, respectively. It showed that there were some differences in MCI of chemical constituents(groups) between AFI and AF. ConclusionThe chemical constituents(groups) of AFI and AF not only differ in content and species, but also in structural characteristics and structure-activity relationship, which can provide a basis for further explaining the scientific connotation of homologous and heterogeneous effect of AFI and AF.

4.
China Pharmacy ; (12): 298-302, 2023.
Artigo em Chinês | WPRIM | ID: wpr-961662

RESUMO

OBJECTIVE To establish the fingerprint of Sophora flavescens, and to screen differential components and determine their contents. METHODS HPLC fingerprints of 12 batches of S. flavescens were established by using Similarity Evaluation System of Chromatographic Fingerprints of TCM (2012 edition); common peaks were identified and their similarities were evaluated. Chemical pattern recognition analysis [cluster analysis (CA),principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA)] were performed with SIMCA 14.1 and SPSS 23.0 software, and differential components which influenced the quality of S. flavescens were screen with variable importance in the projection(VIP)>1 as standard. Meanwhile, the contents of 4 kinds of differential components were determined by the same HPLC method. RESULTS There were 17 common peaks in the fingerprints of 12 batches of S. flavescens,and their similarities were all higher than 0.96. A total of 6 common peaks were identified, i.e. oxymatrine (peak 1), oxysophocarpine (peak 2), matrine (peak 10), trifolirhizin (peak 14), kurarinone (peak 16) and norkurarinone (peak 17). Results of CA, PCA and OPLS-DA showed that 12 batches of S. flavescens were divided into 3 categories according to producing area, i.e. S1-S7 (Shangzhou District of Shaanxi Province) were grouped into one category, S8-S10 (Yichuan County of Henan Province) into one category and S11-S12 (Chifeng City of Inner Mongolia) into one category. VIPs of matrine, norkurarinone, kurarinone and oxysophocarpine and the chemical components represented by peak 11 and 9 were all greater than 1. The contents of matrine, norkurarinone, kurarinone and oxysophocarpine in 12 batches of S. flavescens were 2.65-4.93, 1.54-3.44, 9.63-12.94 and 5.08-6.10 mg/g, respectively. CONCLUSIONS HPLC fingerprint of S. flavescens is established successfully in the study, and can be used to screen 6 differential components by combining with chemical pattern recognition analysis, which can provide reference for quality control of S. flavescens.

5.
China Pharmacy ; (12): 2874-2879, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999220

RESUMO

OBJECTIVE To establish the HPLC fingerprint of Jianpi huayu decoction, and to determine the contents of 8 components. METHODS Thermo Hypersil Gold C18 column was used with mobile phase consisted of methanol-0.05% phosphoric acid aqueous solution (gradient elution) at the flow rate of 1.0 mL/min. The column temperature was 30 ℃, the injection volume was 5 μL. The detection wavelength of matrine was 211 nm, and the other components’ detection wavelength was 283 nm. The similarity evaluation of HPLC fingerprints for 10 batches of Jianpi huayu decoction was performed by using the Similarity Evaluation System of Chromatographic Fingerprint of Traditional Chinese Medicine (2012 edition). The contents of chlorogenic acid, vanillic acid, p-coumaric acid, ferulic acid, hesperidin, quercetin, bergapten and matrine in the samples were determined by HPLC. RESULTS HPLC fingerprint of Jianpi huayu decoction was established. A total of 27 common peaks were identified, and 8 components were identified. The similarity between 10 batches of samples and the control map ranged from 0.942-0.999. RSDs of precision, repeatability and stability tests were less than 3% (n=6). The average recoveries of chlorogenic acid, vanillic acid, p-coumaric acid, ferulic acid, hesperidin, quercetin, bergapten and matrine were 99.48%, 101.32%, 101.18%, 100.79%, 101.12%, 99.19%, 99.81% and 102.46%, respectively; RSDs were 1.34%, 0.93%, 1.90%, 1.84%, 0.54%, 1.53%, 1.33% and 1.01%, respectively (n=6). The contents were 0.021-0.061, 0.025-0.034, 0.116-0.295, 0.006- 0.062, 0.014-0.053, 0.017-0.026, 0.014-0.027 and 14.05-24.11 mg/g, respectively. CONCLUSIONS The established fingerprint and content determination method can provide a reference for the quality control and subsequent preparation development for Jianpi huayu decoction.

6.
China Pharmacy ; (12): 2861-2867, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999218

RESUMO

OBJECTIVE To establish the HPLC fingerprint of Xintongshu spray, determine the contents of identified components, and investigate the transferring patterns of the index components of decoction pieces, intermediates and spray, so as to provide scientific reference for technology management and quality control of Xintongshu spray. METHODS HPLC fingerprints of 13 batches of Xintongshu spray were established by the Similarity Evaluation System for Chromatographic Fingerprints of TCM (2012 edition), and common peaks were identified; the contents of identified components were determined by HPLC. The paeonol in Moutan Cortex and ferulic acid in Chuanxiong Rhizoma were used as index components to investigate the transferring patterns of them in decoction pieces, intermediates and spray. RESULTS There were a total of 33 common peaks in the fingerprints of 13 batches of Xintongshu spray, and the similarities were more than 0.994. Eight components were identified, i.e. gallic acid (peak 5), oxypaeoniflorin (peak 9), chlorogenic acid(peak 10), caffeic acid (peak 14), paeoniflorin (peak 17), ferulic acid (peak 21), senkyunolide Ⅰ (peak 27) and paeonol (peak 31). The contents of 8 components ranged from 0.590 3- 0.719 7, 0.565 7-0.851 3, 0.279 4-0.368 1, 0.080 6-0.106 1, 1.922 5-3.033 5, 0.151 3-0.191 6, 0.250 6-0.336 0, 3.056 7-4.161 0 mg/mL, respectively. The average transfer rates of paeonol and ferulic acid from decoction pieces to sprays were 63.76% and 38.06%, respectively. It was also found that the process in which the loss of paeonol was more than 30% was the extraction by percolation and negative pressure concentration of Moutan Cortex. The process in which the loss of ferulic acid was more than 50% was the steam distillation extraction process of Chuanxiong Rhizoma. CONCLUSIONS The established HPLC fingerprint and content determination method of Xintongshu spray are reproducible and specific. The key processes that cause a decrease in the average transfer rates of the index components are the extraction by percolation and negative pressure concentration of Moutan Cortex and steam distillation extraction of Chuanxiong Rhizoma.

7.
Malaysian Journal of Medicine and Health Sciences ; : 178-185, 2023.
Artigo em Inglês | WPRIM | ID: wpr-998843

RESUMO

@#Introduction: Fingermarks left at a crime scene can indicate the presence of an individual and his/her involvement in the crime. Fingermarks, usually invisible, can appear on any surface and may be contaminated by any exogenous substances, including drug substance. Recovery of fingermarks contaminated by drug substance is crucial to link an individual with the drug-related crimes. Hence, this study was aimed to investigate the recovery and visualisation of methamphetamine-contaminated fingermarks from various non-porous surface materials. Methods: In this study, fingermarks were deposited on 11 types of surface materials varied by the presence of methamphetamine contamination, immediacy of deposition, and their concentration levels. Each fingermark was then developed using white and black fingerprint powders, graded, and compared based on the different settings. Results: Application of fingerprint powder was good in developing fingermarks; however, its suitability depends on the nature of the surface materials. Black fingerprint powder produced better visualisation where the fingermarks on all the 11 surface materials tested in this study were successfully recovered compared to white fingerprint powders. Methamphetamine-contaminated fingermarks could still be recovered using the fingerprint powder dusting method, but the fingermark grade was reduced due to the presence of exogenous substance. Conclusion: To conclude, the recovery and visualisation of methamphetamine-contaminated fingermarks on non-porous surfaces were successfully carried out through the application of fingerprint powder. A more severe contamination might lead to lower fingermark grade showing lesser ridge details.

8.
China Pharmacy ; (12): 2715-2720, 2023.
Artigo em Chinês | WPRIM | ID: wpr-998554

RESUMO

OBJECTIVE To establish the fingerprint of total saponins from Mussaenda pubescens, and to study the spectrum- effect relationship of its hepatoprotective activity. METHODS Ten batches of total saponins from M. pubescens from different origins were prepared using 75% ethanol as solvent. High-performance liquid chromatography (HPLC) and the Similarity Evaluation System for Traditional Chinese Medicine Chromatographic Fingerprints (2012 edition) were used to draw the fingerprints of 10 batches of total saponins from M. pubescens. The similarity evaluation and identification of common peaks were conducted. The same HPLC method was adopted to determine the contents of five triterpenoid saponins (mussaendoside H, mussaendoside U, mussaglaoside C, mussaendoside G and mussaendoside O). The hepatoprotective effect of total saponins from M. pubescens was investigated by establishing carbon tetrachloride-induced acute liver injury model mice, and the spectrum-effect relationship was studied by using grey correlation analysis. RESULTS There were 11 common peaks in 10 batches of total saponins from M. pubescens, 5 of which were identified, i.e. mussaendoside H (peak 3), mussaendoside U (peak 7), mussaglaoside C (peak 8), mussaendoside G (peak 9) and mussaendoside O (peak 11); the similarities of 10 batches of samples ranged 0.940- 0.991. Average contents of mussaendoside H, mussaendoside U, mussaglaoside C, mussaendoside G, mussaendoside O were 0.01- 0.05, 0.10-0.21, 0.10-0.18, 0.03-0.08, 0.20-0.40 mg/g, respectively. Ten batches of total saponins from M. pubescens could generally reduce the contents of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β in liver tissue of model mice (P<0.05 or P<0.01). The E-mail:13878195336@139.com correlation between the common peak areas and the contents of ALT, AST, TNF-α, IL-6 and IL-1β were 0.602-0.757, 0.585-0.833, 0.593-0.795, 0.618-0.820, 0.607-0.804, respectively; the peaks with high correlation were peaks 11, 9 and 8 in order. CONCLUSIONS Ten batches of total saponins from M. pubescens have similar components, and the average contents of mussaendoside H, mussaendoside U, mussaglaoside C, mussaendoside G and mussaendoside O are different. The batches of samples have a certain degree of hepatoprotective effect; mussaendoside O, mussaendoside G and mussaglaoside C may be its main active components.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 158-164, 2023.
Artigo em Chinês | WPRIM | ID: wpr-976551

RESUMO

Strengthening the standard formulation and quality management of traditional Chinese medicine(TCM) dispensing granules is an important part of the strategic planning for the development of TCM in China. In order to examine the clinical application and overall quality control of the existing national standards for TCM dispensing granules, this study classified and summarized the varieties in the existing standards, analyzed their clinical applicability, and discussed the characteristics of the test methods for identification, content determination and specific chromatogram/fingerprint. It was found that the coverage of the existing standards was inadequate in terms of quantity, and it was even weaker in the aspects of therapeutic efficacy, herb family, processing method and preparation method of TCM dispensing granules. It was concluded that the characteristics of national standards in test methods were summarized as follows:guided by clinical application, based on the reference system, taking specific chromatogram as a breakthrough, so as to improve the overall quality control of TCM dispensing granules. It is suggested that the coverage of national standards should be subsequently expanded to meet the needs of market development. In order to enhance clinical applicability, the content of national quality standards should be increased, including increasing variety diversity to meet the needs of clinical application, raising the standard requirements to improve the clinical medication experience, and strengthening effectiveness research to highlight clinical efficacy. At the same time, the accessibility of regulatory inspection is enhanced, the rules for the management of varieties without national standards are promulgated to lay the foundation for the healthy and orderly development of TCM dispening granule industry.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 166-172, 2023.
Artigo em Chinês | WPRIM | ID: wpr-973758

RESUMO

ObjectiveTo analyze the polarized light microscopic characteristics, the composition of physical phases and their relative contents of Maifanitum from different origins, and to establish the Fourier characteristic fingerprint of Maifanitum powder crystals by X-ray diffraction(XRD). MethodA total of 26 batches of Maifanitum samples were selected, and the microscopic characteristics of the sample powders and grinding flakes were observed by polarized light microscopy under single polarized light and orthogonal polarized light, and the main phase compositions and their relative contents were analyzed by powder crystal XRD technique, and the XRD Fourier characteristic fingerprint of Maifanitum was established. The incident light source of XRD was Cu target Kβ radiation, the light tube voltage and light tube current were 40 kV and 40 mA, respectively, the divergence slit was 1°, the scattering slit was 1°, the receiving slit was 0.2 mm, the scanning speed was 5°·min-1 with continuous scanning and scanning range of 5-90°(2θ), and the step length was 0.02°. ResultThe polarized light micrographs of powders and grinding flakes of Maifanitum were obtained, and the main phases were plagioclase, potassium feldspar and quartz, and a few samples also contained illite, pyrite, iron dolomite, calcite, iron amphibole and chlorite, etc. The relative total content of feldspar phases was 61.9%-82.4%, and the relative content of quartz was 12.6%-33.6%. The XRD Fourier fingerprint analysis method of Maifanitum with 13 common peaks as the characteristic fingerprint information was established, and the similarity calculated by the mean correlation coefficient method was 0.920 9-0.997 7, the similarity calculated by the mean angle cosine method was 0.940 5-0.998 4, the similarity calculated by the median correlation coefficient method was 0.921 1-0.997 5, and the similarity calculated by the median angle cosine method was 0.947 5-0.998 2. ConclusionThe polarized light microscopic identification characteristics of Maifanitum are mainly plagioclase, quartz and potassium feldspar, and the technique of powder crystal XRD Fourier fingerprint analysis can be used for the identification of Maifanitum.

11.
China Pharmacy ; (12): 1223-1227, 2023.
Artigo em Chinês | WPRIM | ID: wpr-973623

RESUMO

OBJECTIVE To establish the fingerprint of Qiguiling mixture and the method for the content determination of 4 kinds of active components such as calycosin-7-glucoside, so as to control the quality of Qiguiling mixture. METHODS The fingerprints of 12 batches of Qiguiling mixture were established by HPLC. SPSS 25.0 software was used for cluster analysis and principal component analysis, and SIMCA 14.1 software was used for orthogonal partial least squares-discriminant analysis. The variable importance in projection (VIP) value greater than 1.0 was used as the index to screen the differential components. The contents of calycosin-7-glucoside, glycyrrhizin and glycyrrhizic acid were calculated by the quantitative analysis of multi- components by single marker (QAMS) with hesperidin as the internal reference, and the results were compared with external standard method. RESULTS In the fingerprints of 12 batches of samples, 17 common peaks were identified, and the similarities were more than 0.940. A total of 4 common peaks were identified, which were calycosin-7-glucoside (peak 6), glycyrrhizin (peak 8), hesperidin (peak 12), and glycyrrhizic acid (peak 17). The 12 batches of samples could be clustered into two categories, S4, S7-S9 and S11-S12 were clustered into one category, and the other batches of samples were clustered into one category. The cumulative variance contribution rate of the six principal components was 85.840%, and VIP values of peaks 15, 14, 4, 8 (glycyrrhizin) and 9 were all greater than 1.0. The relative error between the results of QAMS and external standard method was less than 5% (n=3) for the contents of calycosin-7-glucoside, glycyrrhizin and glycyrrhizic acid. CONCLUSIONS Established HPLC fingerprint and content determination method in this study can be used for quality control of Qigiling mixture. Five components such as glycyrrhizin are the differential components.

12.
China Pharmacy ; (12): 1081-1085, 2023.
Artigo em Chinês | WPRIM | ID: wpr-972951

RESUMO

OBJECTIVE To establish HPLC fingerprint of Portulaca oleracea, establish quantitative analysis of multi- components by single-marker (QAMS) method for the content determination of caffeic acid, ferulic acid, genistin and quercetin, and provide reference for quality control of the medicine. METHODS The determination was performed on Eclipse XDB-C18 column with mobile phase consisted of methanol-0.2% phosphoric acid solution (gradient elution) at the flow rate of 1.0 mL/min. The column temperature was 25 °C, and detection wavelength was set at 360 nm. The sample size was 10 μL. HPLC fingerprint of P. oleracea was established according to the above chromatographic conditions. Cluster analysis (CA) and principal component analysis (PCA) were performed for 15 batches of specimens. Using caffeic acid as internal standard, relative correction factors of other three components were calculated by QAMS, and then the component content was calculated on the basis of relative correction factors, which was compared with the external standard method. RESULTS HPLC fingerprints of 15 batches of P. oleracea were calibrated with a total of 17 common peaks, and 4 components (caffeic acid, ferulic acid, genistin, quercetin) were identified; the similarities of 15 batches of samples were greater than 0.890. The results of CA showed that S1-S10 were clustered into one category, and S11-S15 were clustered into one category. The results of PCA revealed that the accumulative contribution rate of the two main components was 92.502%, and the classification results were basically consistent with CA. The linear range of caffeic acid, ferulic acid, genistin and quercetin were 0.003 1-0.157 1, 0.003 6-0.181 7, 0.008 5-0.425 6,0.000 4-0.021 8 mg/mL (R2≥0.999 7); the results of precision, repeatability, stability (24 h) and recovery tests all complied with the requirements of Chinese Pharmacopoeia. The relative correction factors of ferulic acid, genistin and quercetin calculated by QAMS were 1.534, 5.302 and 0.174; there was no significant difference in the contents of components measured between this method and the external standard method. CONCLUSIONS The established HPLC fingerprint combined with QAMS can be used for the quality control of multiple index components in P. oleracea. The origin has a certain influence on the quality of P. oleracea, and the quality of P. oleracea produced in Sichuan is better than that produced in Anhui and Hebei.

13.
China Journal of Chinese Materia Medica ; (24): 1518-1525, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970623

RESUMO

Since Curcumae Radix decoction pieces have multiple sources, it is difficult to distinguish depending on traditional cha-racters, and the mixed use of multi-source Curcumae Radix will affect its clinical efficacy. Heracles Neo ultra-fast gas phase electronic nose was used in this study to quickly identify and analyze the odor components of 40 batches of Curcumae Radix samples from Sichuan, Zhejiang, and Guangxi. Based on the odor fingerprints established for Curcumae Radix decoction pieces of multiple sources, the odor components was identified and analyzed, and the chromatographic peaks were processed and analyzed to establish a rapid identification method. Principal component analysis(PCA), discriminant factor analysis(DFA), and soft independent modeling cluster analysis(SIMCA) were constructed for verification. At the same time, one-way analysis of variance(ANOVA) combined with variable importance in projection(VIP) was employed to screen out the odor components with P<0.05 and VIP>1, and 13 odor components such as β-caryophyllene and limonene were hypothesized as the odor differential markers of Curcumae Radix decoction pieces of diffe-rent sources. The results showed that Heracles Neo ultra-fast gas phase electronic nose can well analyze the odor characteristics and rapidly and accurately discriminate Curcumae Radix decoction pieces of different sources. It can be applied to the quality control(e.g., online detection) in the production of Curcumae Radix decoction pieces. This study provides a new method and idea for the rapid identification and quality control of Curcumae Radix decoction pieces.


Assuntos
Medicamentos de Ervas Chinesas/análise , Nariz Eletrônico , China , Raízes de Plantas/química , Limoneno/análise , Cromatografia Líquida de Alta Pressão
14.
China Journal of Chinese Materia Medica ; (24): 3000-3013, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981446

RESUMO

Huocao(a traditional Chinese herbal medicine) moxibustion is a characteristic technology in Yi medicine suitable for cold-dampness diseases. Huocao, as the moxibustion material, is confusedly used in clinical practice and little is known about its quality control. In this study, UPLC method was used to establish the chemical fingerprint of non-volatile components in Huocao, and the contents of eight phenolic acids such as chlorogenic acid were determined. Multivariate statistical analysis was performed to obtain the indicator components of Huocao for quality evaluation, and thus a comprehensive evaluation system for the quality of Huocao was built. The UPLC fingerprints of 49 batches of Huocao were established, and there were 20 common peaks, of which eight phenolic acids including neochlorogenic acid and chlorogenic acid were identified. Except for three batches of Huocao, the similarity of the other 46 batches was higher than 0.89, suggesting that the established fingerprint method could be used for quality control of the medicinal herb. The correlation coefficient between entropy weight score of the eight phenolic acids and comprehensive fingerprint score in Huocao was 0.875(P<0.01), which indicated that the eight phenolic acids could be used as indicator components for the quality evaluation of Huocao. Furthermore, in multivariate statistical analysis on the common peaks of fingerprint and the contents of the eight phenolic acids, chlorogenic acid, isochlorogenic acid A and isochlorogenic acid C were screened to be the indicator components. The results revealed that the proposed method achieved a simple and accurate quality control of Huocao based on UPLC fingerprint and multi-component content determination, which provided useful data for establishing the quality standard of Huocao.


Assuntos
Ácido Clorogênico , Entropia , Hidroxibenzoatos , Controle de Qualidade
15.
China Journal of Chinese Materia Medica ; (24): 1866-1875, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981405

RESUMO

According to the method of predicting the physical properties of oily powder based on the additive physical properties of Chinese medicinal powder, Dioscoreae Rhizoma and calcined Ostreae Concha with high sieve rate and good fluidity were mixed and crushed with Persicae Semen, Platycladi Semen, Raphani Semen, Ziziphi Spinosae Semen, and other typical oily materials with high fatty oil content in proportion to obtain 23 mixed powders. Fifteen physical properties such as bulk density, water absorption, and maximum torque force were measured, and the physical properties of typical oily powders were predicted. When the mixing and grinding ratio was in the range of 5∶1-1∶1, the r value in the correlation equation between the weighted average score of the mixed powder and the powder proportion ranged from 0.801 to 0.986, and the linearity was good, indicating that the method of predicting the physical properties of oily powder based on the additive physical properties of traditional Chinese medicine(TCM)powder was feasible. The results of cluster analysis showed that the classification boundaries of the five kinds of TCM materials were clear, and the similarity of the physical fingerprints of powdery and oily materials decreased from 80.6% to 37.2%, which solved the problem of fuzzy classification boundaries of powdery and oily materials due to the lack of representativeness of oily material model drugs. The classification of TCM materials was optimized, laying a foundation for optimizing the prediction model of the prescription of personalized water-paste pills.


Assuntos
Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas , Pós , Prescrições
16.
China Journal of Chinese Materia Medica ; (24): 1833-1839, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981401

RESUMO

The odor fingerprint of Pollygonati Rhizoma samples with different mildewing degrees was analyzed and the relationship between the odor variation and the mildewing degree was explored. A fast discriminant model was established according to the response intensity of electronic nose. The α-FOX3000 electronic nose was applied to analyze the odor fingerprint of Pollygonati Rhizoma samples with different mildewing degrees and the radar map was used to analyze the main contributors among the volatile organic compounds. The feature data were processed and analyzed by partial least squares discriminant analysis(PLS-DA), K-nearest neighbor(KNN), sequential minimal optimization(SMO), random forest(RF) and naive Bayes(NB), respectively. According to the radar map of the electronic nose, the response values of three sensors, namely T70/2, T30/1, and P10/2, increased with the mildewing, indicating that the Pollygonati Rhizoma produced alkanes and aromatic compounds after the mildewing. According to PLS-DA model, Pollygonati Rhizoma samples of three mildewing degrees could be well distinguished in three areas. Afterwards, the variable importance analysis of the sensors was carried out and then five sensors that contributed a lot to the classification were screened out: T70/2, T30/1, PA/2, P10/1 and P40/1. The classification accuracy of all the four models(KNN, SMO, RF, and NB) was above 90%, and KNN was most accurate(accuracy: 97.2%). Different volatile organic compounds were produced after the mildewing of Pollygonati Rhizoma, and they could be detected by electronic nose, which laid a foundation for the establishment of a rapid discrimination model for mildewed Pollygonati Rhizoma. This paper shed lights on further research on change pattern and quick detection of volatile organic compounds in moldy Chinese herbal medicines.


Assuntos
Nariz Eletrônico , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Teorema de Bayes , Medicamentos de Ervas Chinesas/análise , Análise Discriminante
17.
China Journal of Chinese Materia Medica ; (24): 2781-2791, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981381

RESUMO

Rosae Radix et Rhizoma is a herbal medicine in a variety of famous Chinese patent medicines, while the quality standard for this medicine remains to be developed due to the insufficient research on the quality of Rosae Radix et Rhizoma from different sources. Therefore, this study comprehensively analyzed the components in Rosae Radix et Rhizoma of different sources from the aspects of extract, component category content, identification based on thin-lay chromatography, active component content determination, and fingerprint, so as to improve the quality control. The results showed that the content of chemical components varied in the samples of different sources, while there was little difference in the chemical composition among the samples. The content of components in the roots of Rosa laevigata was higher than that in the other two species, and the content of components in the roots was higher than that in the stems. The fingerprints of triterpenoids and non-triterpenoids were established, and the content of five main triterpenoids including multiflorin, rosamultin, myrianthic acid, rosolic acid, and tormentic acid in Rosae Radix et Rhizoma was determined. The results were consistent with those of major component categories. In conclusion, the quality of Rosae Radix et Rhizoma is associated with the plant species, producing area, and medicinal parts. The method established in this study lays a foundation for improving the quality standard of Rosae Radix et Rhizoma and provides data support for the rational use of the stem.


Assuntos
Medicamentos de Ervas Chinesas/química , Rizoma/química , Raízes de Plantas/química , Plantas Medicinais , Controle de Qualidade
18.
China Journal of Chinese Materia Medica ; (24): 2471-2479, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981323

RESUMO

In order to comprehensively evaluate the quality of Viticis Fructus, this study established HPLC fingerprints and evaluated the quality of 24 batches of Viticis Fructus samples from different species by similarity evaluation and multivariate statistical analysis(PCA, HCA, PLS-DA). On this basis, an HPLC method was established to compare the content differences of the main components, including casticin, agnuside, homoorientin, and p-hydroxybenzoic acid. The analysis was performed on the chromatographic column(Waters Symmetry C_(18)) with a gradient mobile phase of acetonitrile(A)-0.05% phosphoric acid solution(B) at the flow rate of 1 mL·min~(-1) and detection wavelength of 258 nm. The column temperature was 30 ℃ and the injection volume was 10 μL. The HPLC fingerprint of 24 batches of Viticis Fructus samples was established with 21 common peaks, and nine peaks were identified. Similarity analysis was carried out based on chromatographic data of 24 batches of chromatographic data of Viticis Fructus, and the results showed that except for DYMJ-16, the similarity of Vitex trifolia var. simplicifolia was ≥0.900, while that of V. trifolia was ≤0.864. In addition, the similarity analysis of two different species showed that the similarity of 16 batches of V. trifolia var. simplicifolia was 0.894-0.997 and that of the eight batches of V. trifolia was between 0.990 and 0.997. The results showed that the similarity of fingerprints of these two species was different, but the similarity between the same species was good. The results of the three multivariate statistical analyses were consistent, which could distinguish the two different species. The VIP analysis results of PLS-DA showed that casticin and agnuside contributed the most to the distinction. The content determination results showed that there was no significant difference in the content of homoorientin and p-hydroxybenzoic acid in Viticis Fructus from different species, but the content of casticin and agnuside was significantly different in different species(P<0.01). The content of casticin was higher in V. trifolia var. simplicifolia, while agnuside was higher in V. trifolia. The findings of this study show that there are differences in fingerprint similarity and component content of Viticis Fructus from different species, which can provide references for the in-depth study of the quality and clinical application of Viticis Fructus.


Assuntos
Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Vitex/química
19.
Chinese Journal of Biotechnology ; (12): 2839-2860, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981236

RESUMO

The present study aims to explore the genetic diversity of germplasm resources of Chrysanthemum×morifolium (hereinafter, C.×morifolium) at the molecular level and to establish a fingerprint database of C.×morifolium varieties. We employed 12 pairs of primers with high levels of polymorphism, clear bands, and high degrees of reproducibility to analyze the SSR molecular markers and genetic diversity of 91 C.×morifolium materials and 14 chrysanthemum- related materials. With regard to constructing the fingerprints of the tested materials, we chose 9 pairs of core primers. The findings revealed that 12 primer pairs detected 104 alleles in 105 samples, ranging from 2 to 26. The average number of observed alleles (Na) per site was 9.25. The average number of effective alleles (Ne) per site was 2.745 6, with its range being 1.276 0 to 4.742 5. Shannon genetic diversity index (I) values ranged between 0.513 3 and 2.239 9 (M=1.209 0). Nei's gene diversity index (H) ranged between 0.216 3 and 0.789 1 (M=0.578 0). The observed heterozygosity (Ho) ranged between 0.223 3 and 0.895 2 (M=0.557 5). The expected heterozygosity (He) ranged between 0.217 4 and 0.793 3 (M=0.580 8). The polymorphism information content (PIC) ranged between 0.211 5 and 0.774 0 (M=0.532 9). The genetic similarity (GS) ranged between 0.228 5 and 1.000 0 (M=0.608 3). Cluster analysis revealed that when the genetic distance (GD) equals to 0.30, the tested materials can be classified into 2 groups. When the GD equals to 0.27, the first group can be divided into 6 subgroups; accordingly, 105 tested materials can be divided into 7 subgroups. The cophenetic correlation test was carried out based on the cluster analysis, and the corresponding results showed that the cluster map correlated with the genetic similarity coefficient (r=0.952 73). According to the results of Structure population analysis, we obtained the optimal population number, with the true number of populations (K) being 3 and the population being divided concerning Q≥0.5. Three subgroups, i.e., Q1, Q2 and Q3, included 34, 33 and 28 germplasms, respectively, and the remaining 10 germplasms were identified as the mixed population. During the experiment, 9 pairs of core primers were screened among the total of 12 for a complete differentiation regarding 105 tested materials, and the fingerprints of 91 C.×morifolium materials and 14 chrysanthemum-related materials were further constructed. Overall, there were significant genetic differences and rich genetic diversity among C.×morifolium materials, which would shed light on the garden application and variety selection fields of C.×morifolium. The fingerprint database of 105 C.×morifolium varieties and chrysanthemum-related species may provide technical support for future research regarding the identification and screening system of C.×morifolium varieties.


Assuntos
Variação Genética , Chrysanthemum/genética , Reprodutibilidade dos Testes , Repetições de Microssatélites/genética , Polimorfismo Genético , Biomarcadores , Filogenia
20.
China Pharmacy ; (12): 1949-1954, 2023.
Artigo em Chinês | WPRIM | ID: wpr-980586

RESUMO

OBJECTIVE To establish the fingerprints of Ardisia crenata, Sophora tonkinensis and their couplet medicines, and to determine the contents of five components in them. METHODS Using water as solvent, single lyophilized powder of A. crenata and S. tonkinensis and combined lyophilized powder of their couplet medicines were prepared by combining lyophilization technology. The fingerprints of three lyophilized powder samples were established by using high-performance liquid chromatography (HPLC), and the contents of 5 kinds of components such as gallic acid were determined simultaneously. RESULTS There were 5, 10 and 14 common peaks in the fingerprints for single lyophilized powder of A. crenata and S. tonkinensis and combined lyophilized powder of their couplet medicines; the similarities of them with the control fingerprints were all greater than 0.90. For combined lyophilized powder of couplet medicines, peak 3 Δ 基金项目 国家重点研发计划项目(No.2018YFC1708100);贵 州省科技计划项目(No.黔科合基础-ZK〔2022〕一般483,No.黔科合成 was identified as gallic acid, peak 4 as matrine, peak 6 as 果〔2021〕一般137);贵州省教育厅高等学校科学研究项目(青年项目) oxymatrine, peak 8 as bergenin, and peak 14 as trifolirhizin. In single lyophilized powder of A. crenata, the average contents of gallic acid and bergenin were 0.499 3 and 4.962 6 mg/g, respectively. In single lyophilized powder of S.tonkinensis, the average contents of matrine, oxymatrine and trifolirhizin were 3.046 0, 2.336 6 and 0.278 6 mg/g, respectively. In combined lyophilized powder of couplet medicines, the average contents of gallic acid, matrine, oxymatrine, bergenin and trifolirhizin were 0.560 6, 2.548 7, 1.382 2, 5.960 7 and 0.279 1 mg/g, respectively. The transfer rates were 8.87%-513.19%. CONCLUSIONS The established fingerprint and content determination methods are stable and feasible, and can be used for the quality control of A. crenata and S. tonkinensis and their couplet medicines. The average contents of matrine and oxymatrine in combined lyophilized powder of A. crenata-S. tonkinensis couplet medicines are decreased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA