Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 239-251, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1008092

RESUMO

'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.


Assuntos
Animais , Antocianinas , Embaralhamento de DNA , Flores/genética , Poríferos , Prunus/genética , Glutamina/análogos & derivados , Extratos Vegetais
2.
Acta Pharmaceutica Sinica ; (12): 1079-1089, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978748

RESUMO

Dihydroflavonol 4-reductase (DFR) plays an essential role in the biosynthesis of anthocyanin and regulation of plant flower color. Based on the transcriptome data of Cistanche tubulosa (Schenk) Wight, a full-length cDNA sequence of CtDFR gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR). CtDFR contains an open reading frame (ORF) of 1 263 bp which encodes 420 amino acids with a predicted molecular weight of 47.5 kDa. The sequence analysis showed that CtDFR contains a nicotinamide adenine dinucleotide phosphate (NADPH) binding domain and a specific substrate binding domain. The expression analysis indicated that CtDFR was highly expressed in red and purple flowers, and the relative expression levels were 4.04 and 19.37 times higher than those of white flowers, respectively. The recombinant CtDFR protein was expressed in E.coli BL21 (DE3) using vector pET-28a-CtDFR and was purified. In vitro enzyme activity analysis, CtDFR could reduce three types of dihydroflavonols including dihydrokaempferol, dihydroquercetin, and dihydromyricetin to leucopelargonidin, leucocyanidin and leucodelphinidin. Subcellular localization analysis showed that CtDFR was mainly localized in the cytoplasm. These results demonstrate that CtDFR plays an important role in regulation of flower color in C. tubulosa and make a valuable contribution for the further investigation on the regulation mechanism of C. tubulosa (Schenk) Wight flower color.

3.
Chinese Journal of Biotechnology ; (12): 678-692, 2020.
Artigo em Chinês | WPRIM | ID: wpr-827001

RESUMO

As water-soluble, natural pigments, anthocyanins are responsible for the red, purple and blue colors of many flowers, which attract pollinators to spread pollen. The colors of flowers are also essential for plants to survive in the nature and become one of the most significant characteristics of ornamental plants. In the booming floriculture industry, to produce various flower colors could increase the richness of natural colors, but it is still difficult to breed flowers with coveted blue color. The diversity of flower color is mainly determined by the types and contents of anthocyanins and their derivatives. The synthesis of delphinidin pigments is the key factor for breeding blue flowers. However, there are no structural genes in many plants to biosynthesize delphinidin pigments. Blue flowers are successfully created by genetic engineering in recent years. In this paper, using common ornamental plants as examples, we review the mechanism of plant flower coloration from the aspects of the key factors affecting the synthesis of delphinidin pigment and the production strategies of blue flowers based on the regulation of anthocyanin metabolism. Different strategies of molecular breeding could provide opportunities to improve colors of other floriculture plants and to develop anthocyanin-rich economic crops, such as colored cotton with blue fibers.


Assuntos
Antocianinas , Metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Pigmentação , Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA