Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 4203-4209, 2018.
Artigo em Chinês | WPRIM | ID: wpr-775358

RESUMO

The history of Rehmannia glutinosa breeding has already beyond 100 years. There are rich cultivated varieties and wild germplasm resources in R. glutinosa. However, there also exist a lot of problems, such as, the pedigree of the existing varieties is not clear, the genetic basis is narrow, backward method of germplasm enhancement and breeding. Breeding of new varieties has been unable to meet the demand of R. glutinosa production in the new era. This paper summarizes the species of Rehmannia and their distribution, the diversity of plant morphology and the quality of R. glutinosa germplasm resources, as well as the progress of R. glutinosa breeding in recent 100 years. For ensuring the orderly, effective and safe production of R. glutinosa, the authors suggest to establish the wild resources protection area and germplasm resources garden, deeply study the genetic base of quality, strengthen application of new breeding method such as mutation breeding, haploid breeding and gene editing.


Assuntos
Melhoramento Vegetal , Plantas Medicinais , Genética , Rehmannia , Genética
2.
Electron. j. biotechnol ; 13(2): 6-7, Mar. 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-567084

RESUMO

The use of transgenic crops is steadily increasing around the world, led by soybean (based on total area) and maize (in terms of total number of countries). Transgenic maize is grown in at least 17 countries across four continents: Africa, America, Asia and Europe. The comprehensive global spread of transgenic maize has significant implications for organizations involved in germplasm conservation and genetic enhancement; particularly as some countries require a GMO-free declaration when receiving shipments of maize germplasm. This article describes the protocol used by the International Maize and Wheat Improvement Center (CIMMYT) for monitoring unintentional transgene flow in maize genebank and breeding plots. The protocol is based on polymerase chain reaction (PCR) markers for detecting specific recombinant DNA sequences in bulked samples collected from sentinel plots. To date, no unintentional transgene flow has been detected in CIMMYT fields of maize genebank accessions or breeding materials.


Assuntos
Genes de Plantas , Monitoramento Ambiental , Segurança , Zea mays/genética , Cruzamento , Reação em Cadeia da Polimerase , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA