Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
J. bras. nefrol ; 46(1): 85-92, Mar. 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534768

RESUMO

Abstract In the human gut, there is a metabolically active microbiome whose metabolic products reach various organs and are used in the physiological activities of the body. When dysbiosis of intestinal microbial homeostasis occurs, pathogenic metabolites may increase and one of them is trimethyl amine-N-oxide (TMAO). TMAO is thought to have a role in the pathogenesis of insulin resistance, diabetes, hyperlipidemia, atherosclerotic heart diseases, and cerebrovascular events. TMAO level is also associated with renal inflammation, fibrosis, acute kidney injury, diabetic kidney disease, and chronic kidney disease. In this review, the effect of TMAO on various kidney diseases is discussed.


Resumo No intestino humano, existe um microbioma metabolicamente ativo cujos produtos metabólicos alcançam diversos órgãos e são utilizados nas atividades fisiológicas do corpo. Quando ocorre disbiose da homeostase microbiana intestinal, os metabólitos patogênicos podem aumentar, e um deles é o N-óxido de trimetilamina (TMAO). Acredita-se que o TMAO tenha um papel na patogênese da resistência à insulina, diabetes, hiperlipidemia, doenças cardíacas ateroscleróticas e eventos cerebrovasculares. O nível de TMAO também está associado à inflamação renal, fibrose, lesão renal aguda, doença renal diabética e doença renal crônica. Nesta revisão, discute-se o efeito do TMAO em diversas doenças renais.

2.
Acta Pharmaceutica Sinica ; (12): 269-278, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016656

RESUMO

Non-infectious chronic diseases in human including diabetes, non-alcoholic fatty liver disease (NAFLD), atherosclerosis (AS), neurodegenerative diseases, osteoporosis, as well as malignant tumors may have some common pathogenic mechanisms such as non-resolved inflammation (NRI), gut microbiota dysfunction, endoplasmic reticulum stress, mitochondria dysfunction, and abnormality of the mammalian target of rapamycin (mTOR) pathway. These pathogenic mechanisms could be the basis for "homotherapy for heteropathy" in clinic. Some commonly used clinical drugs, such as metformin, berberine, aspirin, statins, and rapamycin may execute therapeutic effect on their targeted diseases,and also have the effect of "homotherapy for heteropathy". The mechanisms of the above drugs may include anti-inflammation, modulation of gut microbiota, suppression of endoplasmic reticulum stress, improvement of mitochondria function, and inhibition of mTOR. For virus infectious diseases, as some viruses need certain commonly used replicases, the inhibitors of the replicases become examples of "homotherapy for heteropathy" for antiviral therapy in clinic (for example tenofovir for both AIDS and HBV infection). Especially, in case of outbreak of new emerging viruses, these viral enzyme inhibitors such as azvudine and sofibuvir, could be rapidly used in controlling viral epidemic or pandemic, based on the principle of "homotherapy for heteropathy". In this review article, we show the research progress of the biological basis for "homotherapy for heteropathy" and the possible mechanisms of some well-known drugs, in order to provide insights and new references for innovative drug R&D.

3.
Journal of Clinical Hepatology ; (12): 804-809, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016528

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a multisystem disease associated with obesity, insulin resistance, and dyslipidemia and has a complex pathogenesis. Studies have shown that gut microbiota dysbiosis is closely associated with the onset of NAFLD, and traditional Chinese medicine treatment can improve the laboratory markers and clinical symptoms of NAFLD patients by regulating intestinal microbiota and its metabolites. This article elaborates on the association between NAFLD and gut microbiota, the involvement of gut microbiota dysbiosis in the pathogenesis of NAFLD, and the possible mechanism of traditional Chinese medicine treatment in improving NAFLD from the perspective of gut microbiota, in order to provide new ideas for the treatment of NAFLD.

4.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 171-179, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016437

RESUMO

The interaction between microbes and the human immune system has long been a focus in biomedical research. Next-generation sequencing has revealed that in addition to gut microbiota, the respiratory tract also harbors microbial communities, forming an interconnected network with the gut microbiota through immune cells and active factors. This review aims to explore how the gut and lung microbiota regulate immune responses, including their roles in local and systemic immune modulation. It also delineates the immunological connections along the gut-lung axis. Further elucidating the influence of microbes on the immune system holds important clinical significance for understanding diseases and exploring novel diagnostic and therapeutic strategies.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 65-73, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013341

RESUMO

ObjectiveTo discuss the effects of Cistanches Herba phenylethanoid glycosides (CHPhGs) on the intestinal mucosal barrier and gut microbiota in alcoholic liver disease (ALD) mice were discussed. MethodThe 36 C57BL/6N female mice were randomly divided normal group, normal group of CHPhGs, model group, and low, medium, and high-dose groups (175, 350, 700 mg·kg-1) of CHPhGs, with six mice in each group. The ALD mouse model was built using Lieber-Decarli alcohol liquid feed. The normal group and low, medium, and high-dose groups of CHPhGs were given CHPhGs by gavage daily. Serum aspartate aminotransferase aminotransferase (ALT), alanine aminotransferase (AST), triglycerides (TG), and total cholesterol (TC) levels were detected by an automatic biochemical analyzer. Serum tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), lipopolysaccharide (LPS), lipopolysaccharide-binding protein (LBP), D-lactic acid (D-LA), diamine oxidase (DAO), and LBP of liver were detected by enzyme-linked immunosorbent assay (ELISA). The levels of TG and TC in the liver were detected by colorimetry. Liver tissue was treated by oil red O and hematoxylin-eosin (HE) staining. The microstructure of jejunum epithelial cells was observed by electron microscope. Jejunum and colon were treated by HE staining and alcian blue-periodate-scheff (AB-PAS) staining staining, and mucin 2 (Muc2) was treated by immunohistochemistry. The intestinal contents of the normal group, normal group of CHPhGs, model group, and high-dose group of CHPhGs were collected and sequenced. ResultThe ALD model was established successfully. Compared with the normal group, the levels of serum ALT, AST, and TG, as well as the levels of liver TG and TC in the model group were significantly increased (P<0.05). Histopathology showed that compared with the normal group, the liver cells in the model group showed obvious steatosis. Compared with the model group, the levels of serum TG and liver TG and TC in the low, medium, and high-dose groups of CHPhGs decreased significantly (P<0.05). The serum ALT, AST, TNF-α, IL-1β, LPS, and LBP in the high-dose group of CHPhGs were also significantly decreased (P<0.05). The number of liver cells with steatosis in the high-dose group of CHPhGs was significantly reduced, and the microvilli structure of jejunum epithelial cells was basically intact. The expression of Muc2 was reduced in the colon, and the gut microbiota of the high-dose group of CHPhGs changed significantly (P<0.05). Compared with the normal group, the Allobaculum was significantly up-regulated in the model group (P<0.05). Compared with the model group, the abundance of Akkermansia in the high-dose group of CHPhGs was significantly increased (P<0.01). The abundance of Akkermansia was negatively correlated with that of Allobaculum (r=-0.701, P<0.01). ConclusionCHPhGs can reduce the intestinal barrier injury caused by ALD, which may play a protective role by regulating the abundance and structure of Akkermansia and Allobaculum and affecting the homeostasis of intestinal mucus.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-9, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013334

RESUMO

ObjectiveTo research the mechanism underlying the effect of raw and processed Aurantii Fructus Immaturus switched to Zhishi Shaoyaosan (ZSS) on constipation-predominant irritable bowel syndrome (C-IBS) rats via the brain-gut-microbiota axis. MethodEighty rats were randomly divided into the blank, model, positive drug (pinaverium bromide, 15.625 mg·kg-1), raw ZSS, stir-fried ZSS, bran-fried ZSS, charcoal-fried ZSS and finished ZSS groups (3.75 g·kg-1), with 10 rats in each group. Except for the blank group, which received intragastric administration of 0.9% sodium chloride solution at room temperature, all other groups were administered the ice solution at 0 to 4 ℃ (2 mL·d-1, for a total of 14 d) to establish the C-IBS rat model. The fecal water content and the propulsion rate of small intestine were detected after 14 d of continuous drug administration. The levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), neuro-peptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), diamine oxidase (DAO) and D-lactic acid (D-LA) were detected by enzyme linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the changes in colonic pathological injury in each group. The expression levels of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) and aquaporin-3 (AQP3) mRNA in colon tissues were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and the protein expressions of VIP and AQP3 in colon tissues were detected by Western blot. The content of short chain fatty acids (SCFAs) was determined by gas chromatography-mass spectrometry. ResultCompared with the blank group, the fecal water content and intestinal propulsion rate of rat in the model group were significantly decreased (P<0.01), and the levels of 5-HT, VIP, CGRP and SP in serum were significantly increased. Simultaneously, the NPY levels significantly decreased (P<0.01), the levels of DAO and D-LA in plasma were significantly increased (P<0.01), and the mucosal epithelium of colon tissue was slightly damaged, with reduced goblet cells and significantly reduced luminal granules. The mRNA expression levels of AQP3, cAMP and PKA and the protein expression levels of AQP3 and VIP in colon tissue were significantly decreased (P<0.05, P<0.01). The total amount of SCFAs in feces showed an obvious decreasing trend, with the contents of acetic acid, isobutyric acid, isovaleric acid, valeric acid and caproic acid decreased significantly, while the contents of propionic acid and butyric acid increased significantly (P<0.05, P<0.01). Compared with the model group, the treatment groups increased the intestinal propulsion rate, improved the intestinal mucosal barrier function, and adjusted the level of serum brain-gut peptide in C-IBS rats (P<0.05, P<0.01). The expression levels of AQP3, cAMP, PKA mRNA and VIP, AQP3 protein in colon tissue of rats in all treatment groups were increased. All the treatment groups had a significant downregulation of the content of SCFAs except for isobutyric acid in rat feces, and the effect of ZSS prepared by the bran-fried Aurantii Fructus Immaturus was superior than that of other ZSS. ConclusionThe raw and processed Aurantii Fructus Immaturus switched to ZSS could influence the brain-gut-microbiota axis to treat C-IBS rats and it is more reasonable to use bran-fried Aurantii Fructus Immaturus in ZSS.

7.
Journal of Environmental and Occupational Medicine ; (12): 226-233, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1012483

RESUMO

Early life is a critical window period that determines the growth and development of children, but this delicate and complex period is highly susceptible to the disturbance of various exogenous chemicals, which in consequence may lead to short-term or long-term adverse health effects in human beings. The massive use of antibiotics has contributed to widespread exposure in early life, along with the potentially adverse effects on child health, and has caused great concern in public health. This review summarized recent epidemiological studies on the population with early-life antibiotic exposure and associated health outcomes such as growth and development, allergies, and psycho-behavioral problems in children, as well as potential biological mechanisms underlying these associations. Current findings suggested that antibiotic exposure early in life, including pregnancy and infancy, is strongly associated with childhood allergic diseases (e.g., atopic dermatitis and asthma), growth and development (e.g., obesity and birth length), and childhood psycho-behavioral problems (e.g., autism and anxiety). It also suggested that antibiotic exposure may affect individual health through gut microbiota, thyroid function, inflammation factors, mitochondrial function, and epigenetic mechanisms. In the future, more large prospective birth cohorts should be established to determine the levels of internal exposure to different types of antibiotics at multiple time points in early life and to explore their associations with child health outcomes, as well as to further validate relevant mechanisms, aiming to provide high-quality scientific evidence for research on child health associated with environmental exposure in early life.

8.
China Pharmacy ; (12): 304-310, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006614

RESUMO

OBJECTIVE To investigate the regulatory effects of couplet medicinals of Atractylodes macrocephala-Aucklandia lappa on gut microbiota and short-chain fatty acids (SCFAs) in the diarrhea-type irritable bowel syndrome (IBS-D) rats with spleen deficiency. METHODS The IBS-D rat model with spleen deficiency was induced by intragastric administration of Senna alexandrina combined with restraint stimulation. The model rats were divided into model group, positive control group (pinaverium bromide 1.5 mg/kg), A. macrocephala-A. lappa low-dose, medium-dose and high-dose groups (0.7, 1.4, 2.8 g/kg), with 6 rats in each group. Another 6 healthy rats were taken as the blank control group. The blank control group and the model group were given normal saline intragastrically, and other groups were given relevant drug liquid intragastrically, once a day, for consecutive 14 days. The general characteristics of rats and fecal water content were observed, and intestinal sensitivity [evaluating by abdominal wall withdrawal reflex (AWR) threshold] and the intestinal propulsion rate were determined. The serum levels of 5- hydroxytryptamine(5-HT)and SP were detected, and the pathological changes of colon tissue were observed; the protein expressions of 5-HT-3 receptor(5-HT3R), 5-HT4R and 5-HT transporter(SERT) in colon tissue of rats were detected. 16S rRNA sequencing was performed for the feces of rats in blank control group, model group and A. macrocephala-A. lappa high-dose group; the contents of acetic acid, propionic acid and butyric acid in the feces of the rats were determined. RESULTS Compared with the model group, the body weight after 7 and 14 days of medication, fecal water content, AWR threshold, and the protein expressions of 5-HT4R and SERT in colon tissue were increased significantly in the A. macrocephala-A. lappa medium-dose and high-dose groups (P<0.05 or P<0.01); serum contents of 5-HT and SP, intestinal propulsion rate (except for A. macrocephala-A. lappa medium-dose group), the protein expression of 5-HT3R in colon tissue were decreased significantly (P<0.01); diarrhea relief, mental state recovery, and partially recovery of the structure of colon tissue were all found; moreover, the diversity and species number of gut microbiota were reduced in A. macrocephala-A. lappa high-dose group and the content of butyric acid in fecal samples was significantly reduced (P<0.05). CONCLUSIONS The compatibility of A. macrocephala and A. lappa can improve intestinal motility and sensitivity of IBS-D model rats with spleen deficiency, and alleviate diarrhea. This may be related to improving changes in intestinal microbiota structure, reducing 5-HT expression and butyric acid content, and increasing 5-HT4R and SERT expression.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 262-268, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006579

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease with local joint pain as the main clinical manifestation. It is one of the diseases specifically responding to traditional Chinese medicine (TCM). The occurrence of RA is not only related to innate factors like genetic disorder but also associated with environmental factors, such as diets and microbial infection. The intestine, a vital human organ with digestive and immune functions, is a place where microorganisms colonize and exert intestinal metabolism-improving, barrier-protecting, and immunomodulatory effects. As the research on the onset and treatment of RA is deepening, the potential relationship of intestinal structural and functional abnormalities with the pathogenesis and progression of RA has been revealed. As clinical and experimental studies indicated, joint inflammation coexists with the impaired barrier function, imbalanced immune cells, and disordered gut microbiota. The theory of the gut-joint axis in the pathogenesis, progression, and treatment of RA is highly consistent with the holistic view in TCM. The recent pharmacological studies have shown that Chinese medicine prescriptions and active components can inhibit inflammation, protect joints, and maintain the intestinal function. This article summarizes the basic connotation of the gut-joint axis in RA and the mechanism by which TCM protect the intestinal barrier and modulate the immunity by regulating the gut microbiota structure and improving microbial metabolism in the treatment of RA. This review gives insights into the future research on the gut-joint axis in RA.

10.
Acta Pharmaceutica Sinica ; (12): 135-142, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005426

RESUMO

Berberine (BBR) is the main pharmacological active ingredient of Coptidis, which has hypoglycemic effect, but its clinical application is limited due to its poor oral bioavailability. Polyphenols, derived from cinnamon, are beneficial for type 2 diabetes mellitus (T2DM). The combination of both may have an additive effect. The aim of this study was to investigate the hypoglycemic effect and mechanism of combined medication in diabetic rats. The modeling rats were randomly divided into 5 groups (berberine group, cinnamon group, combined group, metformin group, diabetic control group) and normal control group. The animal experiments were approved by the Animal Ethics Committee (approval number: HMUIRB2022003). The subjects were given orally, and the control group was given equal volume solvent and body weight was measured weekly. Thirty days after administration, oral glucose tolerance test and insulin sensitivity test were performed, and fasting blood glucose (FBG), glycated serum protein (GSP), and serum insulin (INS) levels were detected; high-throughput sequencing technology was used to detect intestinal microbiota structure; real-time quantitative PCR (RT-qPCR) and Western blot were used to detect G protein-coupled receptor 5 (TGR5) and glucagon-like peptide-1 (GLP-1) expression levels. The results showed that, compared with the diabetic control group, the levels of FBG (P < 0.01) and GSP (P < 0.01) in the combined group were lower, and the insulin resistance was improved, which was better than that in the berberine group. Combined treatment increased the relative abundance of Bacteroides, Prevotella and Lactobacillus, reversed the decrease in Lactobacillus in the berberine alone induction group, and the combination of the two could promote the expression of TGR5 and GLP-1. In summary, the combined application of cinnamon and berberine can regulate glucose metabolism better than the application of berberine alone. Berberine combined with cinnamon can improve the function of pancreatic islet β cells in diabetes mellitus type 2 rats by changing the intestinal microbiota, increasing the expression of TGR5 and GLP-1 proteins, and thereby better regulating glucose metabolism.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 240-247, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005274

RESUMO

Colorectal cancer is a common malignant tumor in the digestive system, ranking third in incidence and second in the cause of death worldwide. In recent years, the incidence of colorectal cancer is on the rise, and the age of patients with colorectal cancer tends to be younger, with a heavy cancer burden. It is of great significance to prevent the occurrence, development, recurrence, and metastasis of colorectal cancer to reduce the incidence and mortality of colorectal cancer. Patriniae Herba has the effects of clearing heat, removing toxins, eliminating carbuncle, and discharging pus and shows good therapeutic efficacy on inflammatory bowel disease, digestive tract tumors, pelvic inflammation, gynecological tumor, and so on. Patriniae Herba is often used in the clinical treatment of colorectal cancer, but its mechanism of action is not clear. Modern studies have found that Patriniae Herba contains triterpenoids, saponins, iridoids, flavonoids, and other chemical components, with antioxidant, anti-tumor, anti-bacterial, and other pharmacological effects. The main anti-tumor components of Patriniae Herba are flavonoids. The analysis of network pharmacology and the spectrum-effect relationship has suggested that quercetin, luteolin, apigenin, isoorientin, and isovitexin play a major role in inhibiting the occurrence and development of colorectal cancer. In vivo and in vitro studies have shown that flavonoids in Patriniae Herba can play an anti-tumor role in various ways, such as preventing precancerous lesions of colorectal cancer, inhibiting the growth and proliferation of cancer cells, blocking cancer cell cycle, promoting cancer cell apoptosis, and reversing drug resistance of colorectal cancer. The oral availability of flavonoids is low. The gut is the main metabolic site of flavonoids in the body, its metabolic pathway is closely related to gut microbiota. This paper reviewed the anti-tumor mechanism of flavonoids and their influence on gut microbiota to provide a reference for further research on the mechanism of Patriniae Herba against colorectal cancer and its clinical application.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 169-177, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003779

RESUMO

Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung condition characterized by persistent and often progressive airflow obstruction, including airway abnormalities (e.g., bronchitis and bronchiolitis) and chronic respiratory symptoms (e.g., dyspnea, cough, and expectoration). It is one of the leading causes of death worldwide. According to the theory of traditional Chinese medicine (TCM), the lung and large intestine are interior-exterior related. Therefore, COPD can be treated from both the lung and intestine by the methods of tonifying and invigorating lung, spleen, and kidney, dispelling phlegm, and expelling stasis. Gut microbiota plays a key role in human immunity, nerve, and metabolism and may act on COPD by affecting the structures and functions of lung and intestine tissue and regulating lung inflammation and immunity. TCM can restore the balance of gut microbiota, which is conducive to the recovery from COPD. For example, the treatment method of tonifying lung and invigorating kidney can regulate gut microbiota, alleviate pulmonary and intestinal injuries, and improve lung immunity. The treatment methods of dispelling phlegm and expelling stasis can regulate gut microbiota and reduce pulmonary inflammation. According to the TCM theory of lung and large intestine being interior-exterior related, this review elaborates on the connotation of TCM in the treatment of COPD by regulating gut microbiota, aiming to provide new ideas for the clinical treatment of COPD via gut microbiota.

13.
Arq. gastroenterol ; 61: e23100, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557112

RESUMO

ABSTRACT Background: Alcoholic liver disease (ALD) and metabolic-dysfunction associated steatotic liver disease (MASLD) are common, and gut microbiota (GM) is involved with both. Here we compared GM composition in animal models of MASLD and ALD to assess whether there are specific patterns for each disease. Methods: MASLD model- adult male Sprague Dawley rats, randomized into two groups: MASLD-control (n=10) fed a standard diet; MASLD-group (n=10) fed a high-fat-choline-deficient diet for 16 weeks. ALD model- adult male Wistar rats randomized: ALD-control (n=8) fed a standard diet and water+0.05% saccharin, ALD groups fed with sunflower seed and 10% ethanol+0.05% saccharin for 4 or 8 weeks (ALC4, n=8; ALC8, n=8). ALC4/8 on the last day received alcoholic binge (5g/kg of ethanol). Afterwards, animals were euthanized, and feces were collected for GM analysis. Results: Both experimental models induced typical histopathological features of the diseases. Alpha diversity was lower in MASLD compared with ALD (p<0.001), and structural pattern was different between them (P<0.001). Bacteroidetes (55.7%), Firmicutes (40.6%), and Proteobacteria (1.4%) were the most prevalent phyla in all samples, although differentially abundant among groups. ALC8 had a greater abundance of the phyla Cyanobacteria (5.3%) and Verrucomicrobiota (3.2%) in relation to the others. Differential abundance analysis identified Lactobacillaceae_unclassified, Lachnospiraceae_NK4A136_group, and Turicibacter associated with ALC4 and the Clostridia_UCG_014_ge and Gastranaerophilales_ge genera to ALC8. Conclusion: In this study, we demonstrated that the structural pattern of the GM differs significantly between MASLD and ALD models. Studies are needed to characterize the microbiota and metabolome in both clinical conditions to find new therapeutic strategies.


RESUMO Contexto: A doença hepática alcoólica (DHA) e a doença hepática esteatótica associada à disfunção metabólica (MASLD) são comuns, e a microbiota intestinal (MI) está envolvida em ambas. Aqui, comparamos a composição da MI em modelos animais de MASLD e DHA para avaliar se existem padrões específicos para cada doença. Métodos: Modelo de MASLD - ratos machos adultos da linhagem Sprague Dawley, randomizados em dois grupos: MASLD-controle (n=10) alimentados com uma dieta padrão; grupo MASLD (n=10) alimentados com uma dieta rica em gordura e deficiente em colina por 16 semanas. Modelo de DHA - ratos machos adultos da linhagem Wistar randomizados: DHA-controle (n=8) alimentados com uma dieta padrão e água+0,05% de sacarina; grupos DHA alimentados com semente de girassol e 10% de etanol+0,05% de sacarina por 4 ou 8 semanas (DHA4, n=8; DHA8, n=8). DHA 4/8 no último dia receberam binge alcoólico (5 g/kg de etanol). Posteriormente, os animais foram sacrificados, e as fezes foram coletadas para análise da MI. Resultados: Ambos os modelos experimentais induziram características histopatológicas típicas das doenças. A diversidade alfa foi menor na MASLD em comparação com a DHA (P<0,001), e o padrão estrutural foi diferente entre elas (P<0,001). Bacteroidetes (55,7%), Firmicutes (40,6%) e Proteobactérias (1,4%) foram os filos mais prevalentes em todas as amostras, embora com abundâncias diferenciadas entre os grupos. DHA8 teve uma maior abundância dos filos Cyanobacteria (5,3%) e Verrucomicrobiota (3,2%) em relação aos outros. A análise de abundância diferencial identificou Lactobacillaceae_unclassified, Lachnospiraceae_NK4A136 e Turicibacter associados ao grupo DHA4, e os gêneros Clostridia_UCG_014_ge e Gastranaerophilales_ge associados ao DHA8. Conclusão: Neste estudo, demonstramos que o padrão estrutural da MI difere significativamente entre os modelos de MASLD e DHA. Estudos são necessários para caracterizar a microbiota e os metabólitos ativos em ambas as condições clínicas, a fim de encontrar novas estratégias terapêuticas.

14.
Acta bioquím. clín. latinoam ; 57(4): 5-5, dic. 2023. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1556643

RESUMO

Resumen El personal biomédico carece de plataformas informatizadas que resuman los principales mecanismos de colaboración entre los microbios intestinales y los seres humanos en cuanto a la absorción y transformación de los medicamentos o vacunas y sus respuestas homeostáticas. Por esta razón, el presente trabajo tiene como objetivo aportar evidencias y recomendaciones para el diseño de una plataforma de consulta biomédica, referente a esta relación, lo cual permitirá la valoración de la posible inclusión de la taxa y abundancia microbiana intestinal en los protocolos de evaluación de la efectividad de los mismos. La encuesta realizada a un grupo de profesionales, destinada a la verificación de las posibilidades de acceso y especificidad de este tipo de información posibilitó la identificación de los tópicos principales para la conexión entre grupos de medicamentos, estructura tridimensional, moduladores y mediadores de la respuesta homeostática, biomarcadores, relación inter-reinos y mecanismos patogénicos, de manera que se fusione toda la información "ómica" humanomicrobiota en una plataforma dentro de la página del NCBI, la cual se propone que se denomine Pharmacolobiomic o Pharmaco-metagenomic. La información existe en las bases de datos contenidas en NCBI-NIH, según la búsqueda realizada y el filtrado a partir de 28 628 referencias. A partir de la presente propuesta se demostró la necesidad de contar con una plataformafarma cometagenómica que resuma el papel de la microbiota intestinal en el metabolismo y la efectividad de los fármacos y vacunas; así como disponer de la actualización sistemática para los profesionales en cuanto a la microbiota como biomarcador, en los protocolos de ensayos clínicos.


Abstract Biomedical staff lacks a computer platform that summarises the main mechanisms of collaboration between intestinal microbes and humans, related to the absorption and transformation of drugs and vaccines and their ho-meostatic responses. For this reason, the aim of this work is to provide some evidences and recommendations for the design of a biomedical consultation platform, about the relationship between the microbiota and the effect of drugs or vaccines. These evidences will support the assessment for inclu¬sion of taxa and gut microbial abundance, as a part of clinical protocols of effectiveness. The survey carried out on a group of biomedical professionals, aimed at verifying the possibilities of access and specificity of this type of information made it possible to identify the main topics for the connection between drug groups, three-dimensional structure, modulators and mediators of the homeostatic response, biomarkers, inter-kingdom relationship and pathogenic mechanismsin such a way that all the human-microbiota "omics" information will be shown into a sub-platform within NCBI-NIH, which could be called Pharmacolobiomic or Pharmaco-metagenomic. The information is present in the databases contained in the NCBI, taking into account this search and filtering, from 28 628 references. Based on this proposal, the need for a pharmacometagenomic platform that summarises the role of the intestinal microbiota in the metabolism and effectiveness of drugs and vaccines was demonstrated, as well as having the systematic update for professionals about the microbiota as a biomarker, in clinical trial protocols.


Resumo O pessoal biomédico carece de plataformas computadorizadas que resumam os principais mecanismosde colaboração entre micróbios intestinais e seres humanos, em termos de absorção e transformação demedicamentos e vacinas e suas respostas homeostáticas. Por essa razão, este trabalho visa fornecer evidênciase recomendações para o desenho de uma plataforma de consulta biomédica, referente a esta relação;o que permitirá avaliar a possível inclusão dos táxons e da abundância microbiana intestinal nosprotocolos de avaliação da sua eficácia. A pesquisa realizada em um grupo de profissionais, teve comoobjetivo verificar as possibilidades de acesso e especificidade desse tipo de informação; possibilitouidentificar os principais tópicos para a conexão entre grupos de medicamentos, estrutura tridimensional,moduladores e mediadores da resposta homeostática, biomarcadores, relação inter-reino, mecanismospatogênicos; de forma tal que toda a informação "ômica" humano-microbiota se funde em uma plataformadentro da página do NCBI, à qual se propõe ser chamada de Pharmacolobiomic ou Pharmacometagenomic. A informação existe nas bases de dados contidas em NCBI-NIH, tendo em conta a pesquisarealizada e a filtragem, a partir de 28 628 referências. Com base nessa proposta, foi demonstradaa necessidade de contar com uma plataforma farmacometagenômica que resuma o papel da microbiotaintestinal no metabolismo e eficácia de medicamentos e vacinas; além de ter a atualização sistemáticapara os profissionais quanto à microbiota como biomarcador, nos protocolos de ensaios clínicos.

15.
Artigo | IMSEAR | ID: sea-216074

RESUMO

Recent research has shown a strong correlation between gut dysbiosis and Alzheimer’s disease (AD). The purpose of this review is to investigate the relationship between gut dysbiosis, immune system activation, and the onset of AD and to examine current breakthroughs in microbiota-targeted AD therapeutics. A review of scientific literature was conducted to assess the correlation between gut dysbiosis and AD and the various factors associated. Gut dysbiosis produces an increase in harmful substances, such as bacterial amyloids, which makes the gut barrier and blood-brain barrier more permeable. This leads to the stimulation of immunological responses and an increase in cytokines such as interleukin-1? (IL-1?). As a result, gut dysbiosis accelerates the progression of AD. The review highlights the connection between gut dysbiosis and AD and the potential for microbiota-targeted therapies in AD treatment.

16.
Arq. gastroenterol ; 60(1): 144-154, Jan.-Mar. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1439399

RESUMO

ABSTRACT Background: Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease, characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Several pathways enable bidirectional communication between the central nervous system (CNS), the intestine and its microbiota, constituting the microbiota-gut-brain axis. Objective: Review the pathophysiology of AD, relate it to the microbiota-gut-brain axis and discuss the possibility of using probiotics in the treatment and/or prevention of this disease. Methods: Search of articles from the PubMed database published in the last 5 years (2017 to 2022) structure the narrative review. Results: The composition of the gut microbiota influences the CNS, resulting in changes in host behavior and may be related to the development of neurodegenerative diseases. Some metabolites produced by the intestinal microbiota, such as trimethylamine N-oxide (TMAO), may be involved in the pathogenesis of AD, while other compounds produced by the microbiota during the fermentation of food in the intestine, such as D-glutamate and fatty acids short chain, are beneficial in cognitive function. The consumption of live microorganisms beneficial to health, known as probiotics, has been tested in laboratory animals and humans to evaluate the effect on AD. Conclusion: Although there are few clinical trials evaluating the effect of probiotic consumption in humans with AD, the results to date indicate a beneficial contribution of the use of probiotics in this disease.


RESUMO Contexto: A doença de Alzheimer (DA) é uma doença neurodegenerativa progressiva e irreversível, caracterizada pelo acúmulo de placas amiloides e emaranhados neurofibrilares no cérebro. Diversas vias possibilitam uma comunicação bidirecional entre o sistema nervoso central (SNC), o intestino e sua microbiota, constituindo o eixo microbiota-intestino-cérebro. Objetivo Revisar a fisiopatogenia da DA, relacioná-la com o eixo microbiota-intestino-cérebro e discutir sobre a possibilidade do uso de probióticos no tratamento e/ou prevenção desta doença. Métodos: Busca de artigos da base de dados PubMed publicados nos últimos 5 anos (2017 a 2022) para estruturar a revisão narrativa. Resultados A composição da microbiota intestinal influencia o SNC, resultando em modificações no comportamento do hospedeiro e pode estar relacionada com o desenvolvimento de doenças neurodegenerativas. Alguns metabólitos produzidos pela microbiota intestinal, como o N-óxido de trimetilamina (TMAO), podem estar envolvidos na patogênese da DA, enquanto, outros compostos produzidos pela microbiota durante a fermentação de alimentos no intestino, como o D-glutamato e os ácidos graxos de cadeia curta, são profícuos na função cognitiva. O consumo de microrganismos vivos benéficos à saúde, os probióticos, tem sido testado em animais de laboratório e humanos para avaliação do efeito na DA. Conclusão Embora haja poucos ensaios clínicos que avaliem o efeito do consumo de probióticos em humanos com DA, os resultados até o momento indicam uma contribuição benéfica do uso de probióticos nesta doença.

17.
J. pediatr. (Rio J.) ; 99(1): 11-16, Jan.-Feb. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422014

RESUMO

Abstract Objective: In this article, the author aims to discuss and review the relationship between gut microbiota and Tourette syndrome, and whether the change in gut microbiota can affect the severity of Tourette syndrome. Sources: Literature from PubMed, Google Scholar, and China National Knowledge Infrastructure was mainly reviewed. Both original studies and review articles were discussed. The articles were required to be published as of May 2022. Summary of the findings: Current studies on the gut microbiome have found that the gut microbiome and brain seem to interact. It is named the brain-gut-axis. The relationship between the brain-gut axis and neurological and psychiatric disorders has been a topic of intense interest. Tourette syndrome is a chronic neurological disease that seriously affects the quality of life of children, and there appears to be an increase in Ruminococcaceae and Bacteroides in the gut of patients with Tourette syndrome. After clinical observation and animal experiments, there appear to be particular gut microbiota changes in Tourette syndrome. It provides a new possible idea for the treatment of Tourette syndrome. Probiotics and fecal microbial transplantation have been tried to treat Tourette syndrome, especially Tourette syndrome which is not sensitive to drugs, and some results have been achieved. Conclusions: The relationship between gut microbiota and Tourette syndrome and how to alleviate Tourette syndrome by improving gut microbiota are new topics, more in-depth and larger sample size research is still needed.

18.
Mem. Inst. Oswaldo Cruz ; 118: e220197, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430844

RESUMO

Diabetes is a chronic metabolic disease caused by a reduction in the production and/or action of insulin, with consequent development of hyperglycemia. Diabetic patients, especially those who develop neuropathy, presented dysbiosis, with an increase in the proportion of pathogenic bacteria and a decrease in the butyrate-producing bacteria. Due to this dysbiosis, diabetic patients presented a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream, in parallel to a high circulating levels of pro-inflammatory cytokines such as TNF-α. In this context, we propose here that dysbiosis-induced increased systemic levels of bacterial products, like lipopolysaccharide (LPS), leads to an increase in the production of pro-inflammatory cytokines, including TNF-α, by Schwann cells and spinal cord of diabetics, being crucial for the development of neuropathy.

19.
Chinese Journal of Gastroenterology ; (12): 40-44, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1016049

RESUMO

With the increase in global life expectancy, the incidence of neurodegenerative diseases is increasing year by year. Studies have confirmed that patients with different types of neurodegenerative diseases have circadian rhythm disorder and gut microbiota dysregulation. The occurrence of neurodegenerative diseases and circadian rhythm disorder are mutually causal, and in this causal relationship, gut microbiota may play an important role. Gut microbiota affects the communication between gut and brain through "microbiota ⁃ gut ⁃ brain axis", and can affect neural development. Gut microbiota dysregulation can increase the risk of neurodegenerative diseases. At the same time, the diurnal fluctuation of gut microbiota themselves is also regulated by the host biological clock. This article reviewed the progress of research on relationship of circadian rhythm disorder and gut microbiota involved in neurodegenerative diseases.

20.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 1307-1314, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1014728

RESUMO

Levothyroxine is a class of thyroid hormone medication mainly used in the clinical treatment of thyroid hormone replacement therapy and thyrotropin suppression therapy. In recent years, studies have found a close correlation between the human gut microbiota and the occurrence and development of thyroid diseases, as well as changes in thyroid hormone levels. Therefore, understanding the impact of levothyroxine on the gut microbiota, as well as the effects of the gut microbiota on the metabolism and absorption of levothyroxine, is of great significance for the treatment of thyroid diseases and the rational use of clinical medication. This article explores the interaction between the gut microbiota and levothyroxine and summarizes the current clinical findings of the gut microbiota in levothyroxine therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA