Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 505-510, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1005815

RESUMO

【Objective】 To use hairy enhancer of split 1 (Hes1) to regulate the differentiation of liver epithelial progenitor cells (LEPCs) into cholangiocytes. 【Methods】 The vectors, pTet-on and pTRE2hyg-Hes1, were transfected into LEPCs. The expression of Hes1 was induced by doxycycline (DOX) with different concentrations (0, 0.1, 1, 5, 10, 50, 100 and 500 μg/mL). The expressions of Hes1, molecular markers of hepatocyte and cholangiocyte, glutathione synthetase (Gss), keratin 19 (Krt19) and hepatic nuclear factor 1β (HNF1β) in LEPCs were verified by Western blotting, RT-PCR, Real-time PCR, immunocytochemistry and immunofluorescence. 【Results】 The expression of Hes1 in LEPCs transfected by pTet-on/pTRE2hyg-Hes1 was increased by 11.21 fold when induced by DOX at 10 ug/mL, which drove the LEPCs to differentiate into biliary epithelial cells. With increasing expression of Hes1, cholangiocyte markers, Krt19 and HNF1β, were significantly upregulated, while the hepatocyte marker, Gss, was obviously downregulated. 【Conclusion】 DOX at 10 μg/mL may induce a suitably up-regulated expression of Hes1 in LEPCs double-transfected by pTet-on and pTRE2hyg-Hes1, and the suitable high-expression rather than over-expression of Hes1 can regulate LEPCs to differentiate into cholangiocytes.

2.
J Cancer Res Ther ; 2019 Oct; 15(5): 1216-1220
Artigo | IMSEAR | ID: sea-213512

RESUMO

Background: Baicalein is an active compound extracted from the roots of Scutellaria baicalensis georgi, which is widely and traditionally used in the anticancer therapy. Notch signaling pathway is usually abnormally activated in kinds of human cancers. The aim of the present study is to investigate the antitumor effects of baicalein in human cervical cancer and explore whether baicalein treatment affects notch signaling pathway in human cervical cancers. Materials and Methods: Cervical cancer cells were treated with increasing concentrations of baicalein for 24, 48, and 72 h, respectively. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell viability of cervical cancer cells. The apoptosis rate was determined by FACS assay. Furthermore, the molecular mechanism was investigated. The expression levels of Notch 1, Notch 2, Notch 3, hairy enhancer of split-1 (Hes-1), and Hes-5 were determined by western blotting analysis. Results: MTT assay results revealed that baicalein inhibited cell proliferation of HeLa cells and SiHa cells in a time- and dose-dependent manner. The data from FACS assay demonstrated that baicalein-induced cell apoptosis of cervical cancer cells at the final concentration of 100 μM for 24 h. Furthermore, baicalein treatment downregulated Notch 1/Hes-1, Hes-5 signaling pathway, and there was no obvious change on the expression of Notch 2 and Notch 3. Conclusion: Baicalein inhibited the proliferation of human cervical cancer cells via Notch 1/Hes signaling Pathway. The study would provide some new clues in the clinical therapy of human cervical cancers

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA