Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Forensic Medicine ; (6): 493-499, 2021.
Artigo em Chinês | WPRIM | ID: wpr-985238

RESUMO

Objective To study the metabolic transformation pathways of 4F-MDMB-BUTINACA in vivo by establishing zebrafish models. Methods Six adult zebrafish were randomly divided into blank control group and experimental group, with three fish in each group. After the zebrafish in the experimental group were exposed to 1 μg/mL 4F-MDMB-BUTINACA for 24 h, they were transferred to clean water and cleaned three times, then pretreated for instrumental analysis. The zebrafish in blank control group were not exposed to 4F-MDMB-BUTINACA. Mass spectrometry and structural analysis of 4F-MDMB-BUTINACA and its metabolites were conducted by liquid chromatography-high resolution mass spectrometry and Mass Frontier software. Results A total of twenty-six metabolites of 4F-MDMB-BUTINACA were identified in zebrafish, including eighteen phase Ⅰ metabolites and eight phase Ⅱ metabolites. The main metabolic pathways of phase Ⅰ metabolites of 4F-MDMB-BUTINACA in zebrafish were ester hydrolysis, N-dealkylation, oxidative defluorination and hydroxylation, while the main metabolic pathway of phase Ⅱ metabolites was glucuronidation. Conclusion Metabolite Md24 (ester hydrolysis) and Md25 (ester hydrolysis combined with dehydrogenation) would be recommended to be potentially good biomarkers for abuse of 4F-MDMB-BUTINACA.


Assuntos
Animais , Canabinoides , Cromatografia Líquida , Drogas Ilícitas , Microssomos Hepáticos/química , Peixe-Zebra
2.
Journal of Forensic Medicine ; (6): 166-174, 2021.
Artigo em Inglês | WPRIM | ID: wpr-985204

RESUMO

Objective To study the changes of metabolites in serum and tissues (kidney, liver and heart) of mice died of acute tetracaine poisoning by metabolomics, to search for potential biomarkers and related metabolic pathways, and to provide new ideas for the identification of cause of death and research on toxicological mechanism of acute tetracaine poisoning. Methods Forty ICR mice were randomly divided into control group and acute tetracaine poisoning death group. The model of death from acute poisoning was established by intraperitoneal injection of tetracaine, and the metabolic profile of serum and tissues of mice was obtained by ultra-high performance liquid chromatography-electrostatic field orbitrap high resolution mass spectrometry (UPLC-Orbitrap HRMS). Multivariate statistical principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were used, combined with t-test and fold change to identify the differential metabolites associated with death from acute tetracaine poisoning. Results Compared with the control group, the metabolic profiles of serum and tissues in the mice from acute tetracaine poisoning death group were significantly different. Eleven differential metabolites were identified in serum, including xanthine, spermine, 3-hydroxybutylamine, etc.; twenty-five differential metabolites were identified in liver, including adenylate, adenosine, citric acid, etc.; twelve differential metabolites were identified in heart, including hypoxanthine, guanine, guanosine, etc; four differential metabolites were identified in kidney, including taurochenodeoxycholic acid, 11, 12-epoxyeicosatrienoic acid, dimethylethanolamine and indole. Acute tetracaine poisoning mainly affected purine metabolism, tricarboxylic acid cycle, as well as metabolism of alanine, aspartic acid and glutamic acid. Conclusion The differential metabolites in serum and tissues of mice died of acute tetracaine poisoning are expected to be candidate biomarkers for this cause of death. The results can provide research basis for the mechanism and identification of acute tetracaine poisoning.


Assuntos
Animais , Camundongos , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Metaboloma , Metabolômica , Camundongos Endogâmicos ICR , Tetracaína
3.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 305-320, 2021.
Artigo em Inglês | WPRIM | ID: wpr-881073

RESUMO

Qing-Fei-Pai-Du decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery, viral shedding, hospital stay, and course of the disease. However, the effective constituents of QFPDD remain unclear. In this study, an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.


Assuntos
Animais , Camundongos , Administração Oral , Alcaloides/análise , COVID-19 , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/análise , SARS-CoV-2 , Saponinas/análise , Triterpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA