Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
J Biosci ; 2019 Jun; 44(2): 1-24
Artigo | IMSEAR | ID: sea-214375

RESUMO

We examined interactions between the 83 kDa heat-shock protein (Hsp83) and hsrω long noncoding RNAs (lncRNAs) inhsrω66 Hsp90GFP homozygotes, which almost completely lack hsrω lncRNAs but over-express Hsp83. All +/+; hsrω66Hsp90GFP progeny died before the third instar. Rare Sp/CyO; hsrω66 Hsp90GFP reached the third instar stage butphenocopied l(2)gl mutants, becoming progressively bulbous and transparent with enlarged brain and died after prolongedlarval life. Additionally, ventral ganglia too were elongated. However, hsrω66 Hsp90GFP/TM6B heterozygotes, carrying +/+ or Sp/CyO second chromosomes, developed normally. Total RNA sequencing (+/+, +/+; hsrω66/hsrω66, Sp/CyO; hsrω66/hsrω66, +/+; Hsp90GFP/Hsp90GFP and Sp/CyO; hsrω66 Hsp90GFP/hsrω66 Hsp90GFP late third instar larvae) revealedsimilar effects on many genes in hsrω66 and Hsp90GFP homozygotes. Besides additive effect on many of them, numerousadditional genes were affected in Sp/CyO; hsrω66 Hsp90GFP larvae, with l(2)gl and several genes regulating the centralnervous system being highly down-regulated in surviving Sp/CyO; hsrω66 Hsp90GFP larvae, but not in hsrω66 orHsp90GFP single mutants. Hsp83 and several omega speckle-associated hnRNPs were bioinformatically found topotentially bind with these gene promoters and transcripts. Since Hsp83 and hnRNPs are also known to interact, elevatedHsp83 in an altered background of hnRNP distribution and dynamics, due to near absence of hsrω lncRNAs and omegaspeckles, can severely perturb regulatory circuits with unexpected consequences, including down-regulation of tumoursuppressor genes such as l(2)gl.

2.
Rev. colomb. quím. (Bogotá) ; 44(1): 5-10, ene.-jun. 2015. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-774956

RESUMO

Los telómeros son estructuras complejas de ADN y proteína localizadas en el extremo de los cromosomas eucariotes. Su principal función es proteger el extremo cromosomal de ser reconocido y procesado como ADNs fracturado, evitando así eventos de recombinación y fusión que conducen a inestabilidad cromosomal. El ADN telomérico consta de secuencias cortas, repetidas una tras otra, ricas en guanina; la cadena rica en guanina se extiende formando una región de cadena sencilla denominada extremo 3' protuberante. Las proteínas por su parte, se pueden clasificar en: dsBPs, o proteínas de unión a la cadena doble, GBPs aquellas que reconocen específicamente el extremo protuberante y, proteínas que las interconectan mediante interacciones proteína-proteína. El gen PF3D7_1006800 de Plasmodium falciparum codifica para una proteína putativa similar a una GBP de Criptosporidium parvum, con el fin de establecer si esta proteína de P. falciparum presenta la capacidad de unión al ADN telomérico del parásito, se produjo una proteína recombinante a partir de la región codificante del gen, se purificó y se utilizó en ensayos de unión a ADN, y en la generación de anticuerpos policlonales específicos contra PfGBP. Nuestros resultados indican que la proteína de P. falciparum es una proteína nuclear con capacidad de unión al ADN telomérico in vitro, por lo que podría ser parte del complejo proteico encargado de proteger y/o mantener el telómero in vivo.


Telomeres are specialized structures at the end of chromosomes that consist of repetitive DNA sequences and associated proteins. The primary role of telomeres is to protect the end of linear chromosomes from recombination, fusion, and recognition as broken DNA ends. This protective function can be achieved through association with specific telomere binding proteins. Telomeric DNA consists of G-rich double-stranded arrays followed by a single-stranded G-rich overhang. The telomeric proteins can be classified in dsBPs, which bind double-stranded DNA, GBPs those that bind specifically to G-rich overhang, and proteins that interact with telomeric factors. Plasmodium falciparum gene PF3D7_1006800 codifies for a protein highly similar to Cryptosporidium parvum GBP. In order to investigate whether the P. falciparum protein binds telomeric DNA, a recombinant protein was produced, purified and DNA binding assays were performed. Polyclonal antibodies against rPfGBP were produced and tested in western blot. Our results indicate that PfGBP is a nuclear protein that binds telomeric DNA in vitro, which could be part of the protein complex responsible for protecting and/or maintaining the telomere in vivo.


Os telómeros são estruturas complexas de DNA e proteína localizadas no extremo dos cromossomas dos eucariotas. Sua principal função é proteger o extremo dos cromossomas para que não sejam reconhecidos e processados como DNAs fraturados. O anterior evita eventos de recombinação e fusão que conduzem à instabilidade nos cromossomas. O DNA telomérico tem sequencias curtas e repetidas, ricas em guanina. A cadeia rica em guanina estende-se para formar uma região de cadeia simples chamada extremo 3' protuberante. As proteínas podem-se classificar em: dsBPs ou proteínas de união à cadeia dupla, GBPs que são as que reconhecem especificamente o extremo protuberante e, as proteínas que interligam mediante interações proteína-proteína. O gene PF3D7_1006800 de Plasmodium falciparum codifica para uma proteína similar a uma GBP de Criptosporidium parvum. Com o objetivo de estabelecer se a proteína de P. falciparum presenta a capacidade de união ao DNA telomérico, foi produzida uma proteína recombinante partindo da região codificante do gene, purificou-se e utilizou-se nos ensaios de união ao DNA e na geração de anticorpos policlonais específicos contra PfGBP. Os nossos resultados indicam que a proteína de P. falciparum é uma proteína nuclear com capacidade de união ao DNA telomérico in vitro, pelo que poderia fazer parte do complexo proteico encarregado de proteger e/ou manter o telómero in vivo.

3.
J Biosci ; 2011 Jun; 36(2): 265-280
Artigo em Inglês | IMSEAR | ID: sea-161545

RESUMO

The non-coding hsrω gene of Drosophila melanogaster is expressed in nearly all cell types and developmental stages. However, in the absence of conventional mutant alleles of this gene, its developmental functions remain largely unknown. In the present study, we used a variety of GAL4 drivers to overexpress or ablate this gene’s transcripts in specific tissues and examined the developmental consequences thereof. Our results show that a balanced expression of these non-coding transcripts is critical for survival and normal development in all the tissue types tested, since any change in cellular levels of these transcripts in a given cell type generally has detrimental effects, with extreme cases resulting in organismal lethality, although in a few cases the misexpression of these transcripts also suppresses the mutant phenotype due to other genetic conditions. Evidence is also presented for existence of a new spliced variant of the hsrω-n nuclear transcript. Following the RNAi-mediated down-regulation of hsrω transcripts, the omega speckles disappear so that the nucleoplasmic hnRNPs get diffusely distributed, while upregulation of these transcripts results in greater sequestration of these proteins into omega speckle clusters; either of these conditions would affect activities of the hnRNPs and other hsrω-RNA interacting proteins, which is likely to have cascading consequences. The present findings, together with our earlier observations on effects of altered levels of the hsrω transcripts on induced apoptosis and expanded polyQ-mediated neurodegeneration, further confirm that ncRNA species like the hsrω, far from being evolutionary hangovers, provide critical information for important functions in normal cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA