Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica ; (12): 605-614, 2022.
Artigo em Chinês | WPRIM | ID: wpr-922903

RESUMO

Proteasome controls the degradation of proteins closely related to life activities and plays a key role in the maintenance of protein homeostasis. Proteasome activities decrease with aging, followed by the overwhelming production of damaged proteins which far exceed the protein consumption. Accumulation of these proteins leads to various diseases including neurodegenerative diseases. Therefore, inducing toxic protein degradation is considered as a promising solution for the treatment of these diseases, while increasing the activity of proteasome is considered as an important strategy. However, the research in this field is still in the preliminary stage, and this review will focus on the discussion of the research progress of various small molecule proteasome activators, including research methods, pharmacological effects, structure-activity relationships and the existing problems.

2.
Genet. mol. biol ; 40(1): 181-190, Jan.-Mar. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-892373

RESUMO

Abstract The FOXP subfamily is probably the most extensively characterized subfamily of the forkhead superfamily, playing important roles in development and homeostasis in vertebrates. Intrinsically disorder protein regions (IDRs) are protein segments that exhibit multiple physical interactions and play critical roles in various biological processes, including regulation and signaling. IDRs in proteins may play an important role in the evolvability of genetic systems. In this study, we analyzed 77 orthologous FOXP genes/proteins from Tetrapoda, regarding protein disorder content and evolutionary rate. We also predicted the number and type of short linear motifs (SLIMs) in the IDRs. Similar levels of protein disorder (approximately 70%) were found for FOXP1, FOXP2, and FOXP4. However, for FOXP3, which is shorter in length and has a more specific function, the disordered content was lower (30%). Mammals showed higher protein disorders for FOXP1 and FOXP4 than non-mammals. Specific analyses related to linear motifs in the four genes showed also a clear differentiation between FOXPs in mammals and non-mammals. We predicted for the first time the role of IDRs and SLIMs in the FOXP gene family associated with possible adaptive novelties within Tetrapoda. For instance, we found gain and loss of important phosphorylation sites in the Homo sapiens FOXP2 IDR regions, with possible implication for the evolution of human speech.

3.
Asian Journal of Andrology ; (6): 695-703, 2016.
Artigo em Chinês | WPRIM | ID: wpr-842829

RESUMO

Prostate-associated gene 4 (PAGE4) is a remarkably prostate-specific Cancer/Testis Antigen that is highly upregulated in the human fetal prostate and its diseased states but not in the adult normal gland. PAGE4 is an intrinsically disordered protein (IDP) that functions as a stress-response protein to suppress reactive oxygen species as well as prevent DNA damage. In addition, PAGE4 is also a transcriptional regulator that potentiates transactivation by the oncogene c-Jun. c-Jun forms the AP-1 complex by heterodimerizing with members of the Fos family and plays an important role in the development and pathology of the prostate gland, underscoring the importance of the PAGE4/c-Jun interaction. HIPK1, also a component of the stress-response pathway, phosphorylates PAGE4 at T51 which is critical for its transcriptional activity. Phosphorylation induces conformational and dynamic switching in the PAGE4 ensemble leading to a new cellular function. Finally, bioinformatics evidence suggests that the PAGE4 mRNA could be alternatively spliced resulting in four potential isoforms of the polypeptide alluding to the possibility of a range of conformational ensembles with latent functions. Considered together, the data suggest that PAGE4 may represent the first molecular link between stress and prostate cancer (PCA). Thus, pharmacologically targeting PAGE4 may be a novel opportunity for treating and managing patients with PCA, especially patients with low-risk disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA