Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 721
Filtrar
1.
Braz. j. med. biol. res ; 57: e12857, fev.2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534068

RESUMO

Abstract MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.

2.
Med. U.P.B ; 43(1): 94-106, ene.-jun. 2024. ilus, tab
Artigo em Espanhol | LILACS, COLNAL | ID: biblio-1531520

RESUMO

La infección por el virus SARS-CoV-2, conocida como COVID-19, ha causado alta morbilidad y mortalidad en el mundo. Después de haber descifrado el código genético del virus y haber desarrollado un gran trabajo investigativo en la creación de vacunas, con diversas estrategias de acción, se ha logrado disminuir la morbi mortalidad. Fue necesario acelerar el proceso de producción de vacunas, lo cual estuvo facilitado por el avanzado conocimiento científico en el campo de la genética y la virología, para brindar a la especie humana una protección eficaz y segura contra la agresiva y progresiva infección. Las vacunas se clasifican de acuerdo con su mecanismo de acción, existen vacunas basadas en vectores virales que no se replican, vacunas recombinantes, otras basadas en virus atenuados y virus inactivos, y (la gran novedad de la ciencia actual) las vacunas basadas en ARN mensajero y ADN. Estas últimas han demostrado una gran eficacia y seguridad en la prevención de la infección por el SARS-CoV-2, también han impactado de manera fuerte, por lo que han reducido la infección y la mortalidad en la población. En consecuencia, cada día que pasa desde que se inició el periodo de vacunación mundial, se evidencia una reducción en la curva de contagio y mortalidad por COVID-19.


The infection produced by the SARS-CoV-2 virus, known as COVID-19, has caused high morbidity and mortality across the world. After having deciphered the virus's genoma and carried out investigative endeavors that led to the creation of a variety of vaccines with different mechanisms of action, it has been possible to decrease the morbidity and mortality associated with the virus. It was necessary to accelerate the vaccine production process, which was facilitated by advanced scientific knowledge within the disciplines of genetics and virology, in order to provide the human species with a safe and effective form of protection against the aggressive and progressive infection. Vaccines are classified differently depending on their action mechanisms: there are some based on non-replicating viral vectors, recombinant vaccines, ones that are based on attenuated or inactivated viruses, and (the greatest novelty of current scientific developments) vaccines based on DNA and messenger RNA. The latter has demonstrated significant efficacy and safety in the prevention of the SARS-CoV-2 infection as observed in preliminary studies, and they have meaningfully impacted the population by reducing the rates of infection and mortality. As a result, decreased levels of spread of and mortality from COVID-19 have been evidenced across the globe following the beginning of the vaccine distribution period.


A infecção pelo vírus SARS-CoV-2, conhecido como COVID-19, tem causado elevada morbidade e mortalidade no mundo. Depois de ter decifrado o código genético do virus e de ter realizado um grande trabalho de investigação na criação de vacinas, com diversas estratégias de ação, a morbilidade e a mortalidade foram reduzidas. Foi necessário acelerar o processo de produção de vacinas, facilitado por conhecimentos científicos avançados no domínio da genética e da virologia, para proporcionar à espécie humana uma proteção eficaz e segura contra a infecção agressiva e progressiva. As vacinas são classificadas de acordo com seu mecanismo de ação, existem vacinas baseadas em vetores virais que não se replicam, vacinas recombinantes, outras baseadas em virus atenuados e vírus inativos, e (a grande novidade da ciência atual) vacinas baseadas em RNA mensageiro e ADN. Estas últimas demonstraram grande eficácia e segurança na prevenção da infecção por SARS-CoV-2, mas também tiveram um forte impacto, razão pela qual reduziram a infecção e a mortalidade na população. Consequentemente, a cada dia que passa desde o início do período global de vacinação, fica evidente uma redução na curva de contágio e mortalidade por COVID-19.


Assuntos
Humanos
3.
Chinese Pharmacological Bulletin ; (12): 582-591, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013657

RESUMO

Aim To screen and study the expression of long non-coding RNA (IncRNA) in rats with middle cerebral artery occlusion (MCAO) with MCAO treated with Tao Hong Si Wu decoction (THSWD) and determine the possible molecular mechanism of THSWD in treating MCAO rats. Methods Three cerebral hemisphere tissue were obtained from the control group, MCAO group and MCAO + THSWD group. RNA sequencing technology was used to identify IncRNA gene expression in the three groups. THSWD-regulated IncRNA genes were identified, and then a THSWD-regu-lated IncRNA-mRNA network was constructed. MCODE plug-in units were used to identify the modules of IncRNA-mRNA networks. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the enriched biological functions and signaling pathways. Cis- and trans-regulatory genes for THSWD-regulated IncRNAs were identified. Reverse transcription real-time quantitative pol-ymerase chain reaction (RT-qPCR) was used to verify IncRNAs. Molecular docking was used to identify IncRNA-mRNA network targets and pathway-associated proteins. Results In MCAO rats, THSWD regulated a total of 302 IncRNAs. Bioinformatics analysis suggested that some core IncRNAs might play an important role in the treatment of MCAO rats with THSWD, and we further found that THSWD might also treat MCAO rats through multiple pathways such as IncRNA-mRNA network and network-enriched complement and coagulation cascades. The results of molecular docking showed that the active compounds gallic acid and a-mygdalin of THSWD had a certain binding ability to protein targets. Conclusions THSWD can protect the brain injury of MCAO rats through IncRNA, which may provide new insights for the treatment of ischemic stroke with THSWD.

4.
Chinese Journal of Biologicals ; (12): 322-328, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013396

RESUMO

@#Objective To establish and verify a universal and stable potency test method in vitro for SARS-CoV-2 mRNA vaccine,so as to use it for the quality control of SARS-CoV-2 mRNA vaccine.Methods ELISA kits that could bind well to S protein of SARS-CoV-2 variants,as well as transfected cells,cell plating concentrations and doses for transfection were screened,and then a potency test method for SARS-CoV-2 mRNA vaccine in vitro was established and verified.Results An ELISA kit was found with good binding ability to S protein of each variant,and HEK293T cells were determined as the transfection cells,with the plating concentration of 2.5 × 10~5 cells/mL and the transfection dose of 4 μg/well in the 6-well plate.An universal and stable potency test method for SARS-CoV-2 mRNA vaccine in vitro was established.The verification results showed that the method met the quality control needs.Conclusion The established potency test method in vitro for SARS-CoV-2 mRNA vaccine has good relative accuracy,linearity,intermediate precision and range,and can be applied to the quality control of SARS-CoV-2 mRNA vaccines.

5.
Arch. endocrinol. metab. (Online) ; 68: e230188, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1533670

RESUMO

ABSTRACT Objective: Recent studies have shown a relationship between adipose tissue and coronary artery disease (CAD). The ABCA1 transporter regulates cellular cholesterol content and reverses cholesterol transport. The aim of this study was to determine the relationship between single nucleotide polymorphisms (SNPs) R230C, C-17G, and C-69T and their expression in epicardial and mediastinal adipose tissue in Mexican patients with CAD. Subjects and methods: The study included 71 patients with CAD and a control group consisting of 64 patients who underwent heart valve replacement. SNPs were determined using TaqMan probes. mRNA was extracted using TriPure Isolation from epicardial and mediastinal adipose tissue. Quantification and expression analyses were done using RT-qPCR. Results: R230C showed a higher frequency of the GG genotype in the CAD group (70.4%) than the control group (57.8%) [OR 0.34, 95% CI (0.14-0.82) p = 0.014]. Similarly, C-17G (rs2740483) showed a statistically significant difference in the CC genotype in the CAD group (63.3%) in comparison to the controls (28.1%) [OR 4.42, 95% CI (2.13-9.16), p = 0.001]. mRNA expression in SNP R230C showed statistically significant overexpression in the AA genotype compared to the GG genotype in CAD patients [11.01 (4.31-15.24) vs. 3.86 (2.47-12.50), p = 0.015]. Conclusion: The results suggest that the GG genotype of R230C and CC genotype of C-17G are strongly associated with the development of CAD in Mexican patients. In addition, under-expression of mRNA in the GG genotype in R230C is associated with patients undergoing revascularization.

6.
Arq. bras. oftalmol ; 87(2): e2023, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1533791

RESUMO

ABSTRACT Purpose: To evaluate macular chorioretinal flow changes on optical coherence tomography angiography, in participants who received inactivated and messenger RNA (mRNA) vaccines to prevent coronavirus disease 2019 (COVID-19). Methods: In this prospective cohort study, healthy participants who received two doses of an inactivated COVID-19 vaccine (CoronaVac) and then one dose of an mRNA vaccine (BNT162b2) were examined before and after each vaccination. Ophthalmologic examination and imaging with optical coherence tomography angiography were performed during each visit. We evaluated vascular densities in the superficial and deep capillary plexuses in foveal, parafoveal, and perifoveal areas; the foveal avascular zone; and choriocapillaris flows (in 1- and 6-mm-diameter areas). Results: One eye in each of the 24 participants was assessed. Superficial capillary plexus vascular densities in the parafoveal area were significantly lower after the second dose of the CoronaVac vaccine than after the first dose. In the deep capillary plexus, vascular attenuation was observed only in the parafoveal region after the first CoronaVac dose. However, in all regions, the deep capillary plexus vascular densities and subfoveal choriocapillaris flow were significantly decreased after the second CoronaVac dose. After the BNT162b2 dose, the superficial capillary plexus vascular densities, the deep capillary plexus vascular densities, and subfoveal choriocapillaris flow of most regions were significantly lower than those before vaccinations. Conclusion: Vascular attenuation, observed particularly after the second dose of the CoronaVac vaccine, may explain the pathogenesis of postvaccine ocular ischemic disorders reported in the literature. However, these disorders are extremely rare, and the incidence of thrombotic events caused by COVID-19 itself is higher.

7.
Arch. argent. pediatr ; 121(3): e202202757, jun. 2023. tab
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-1436138

RESUMO

Los niños cursan mayormente la infección por el virus SARS-CoV-2 en forma leve. Sin embargo, de forma muy infrecuente algunos pueden desarrollar una patología con marcada gravedad denominada síndrome inflamatorio multisistémico en niños relacionado temporalmente con COVID-19 (SIM-C). Dado su reciente surgimiento, aún hay aspectos de su fisiopatología que se desconocen. La posibilidad de recidiva en caso de reinfección o ante la vacunación contra SARS-CoV-2 son nuevos interrogantes a los que nos enfrentamos. Reportamos una serie de casos de 4 pacientes adolescentes que cursaron SIM-C y meses después han sido vacunados contra SARS-CoV-2 con plataformas ARN mensajero (ARNm) sin presentar recurrencia de la enfermedad ni efectos adversos cardiológicos


In most cases, children with SARS-CoV-2 have a mild infection. However, very rarely, some children may develop a severe disease called multisystem inflammatory syndrome in children temporally associated with COVID-19 (MIS-C). Given its recent emergence, some aspects of its pathophysiology are still unknown. The possibility of recurrence in case of reinfection or SARS-CoV-2 vaccination are new questions we are facing. Here we report a case series of 4 adolescent patients who developed MIS-C and, months later, received the SARS-CoV-2 vaccine with messenger RNA (mRNA) platforms without disease recurrence or cardiac adverse events.


Assuntos
Humanos , Masculino , Feminino , Adolescente , Vacinas contra COVID-19/administração & dosagem , COVID-19/complicações , COVID-19/prevenção & controle , Vacinação , SARS-CoV-2 , Vacinas de mRNA/administração & dosagem
8.
Chinese Journal of Oncology ; (12): 402-409, 2023.
Artigo em Chinês | WPRIM | ID: wpr-984736

RESUMO

Objective: To study the diagnostic value of different detection markers in histological categories of endocervical adenocarcinoma (ECA), and their assessment of patient prognosis. Methods: A retrospective study of 54 patients with ECA in the Cancer Hospital, Chinese Academy of Medical Sciences from 2005-2010 were performed. The cases of ECA were classified into two categories, namely human papillomavirus-associated adenocarcinoma (HPVA) and non-human papillomavirus-associated adenocarcinoma (NHPVA), based on the 2018 international endocervical adenocarcinoma criteria and classification (IECC). To detect HR-HPV DNA and HR-HPV E6/E7 mRNA in all patients, we used whole tissue section PCR (WTS-PCR) and HPV E6/E7 mRNA in situ hybridization (ISH) techniques, respectively. Additionally, we performed Laser microdissection PCR (LCM-PCR) on 15 randomly selected HR-HPV DNA-positive cases to confirm the accuracy of the above two assays in identifying ECA lesions. Receiver operating characteristic (ROC) curves were used to analyze the efficacy of markers to identify HPVA and NHPVA. Univariate and multifactorial Cox proportional risk model regression analyses were performed for factors influencing ECA patients' prognoses. Results: Of the 54 patients with ECA, 30 were HPVA and 24 were NHPVA. A total of 96.7% (29/30) of HPVA patients were positive for HR-HPV DNA and 63.3% (19/30) for HR-HPV E6/E7 mRNA, and 33.3% (8/24) of NHPVA patients were positive for HR-HPV DNA and HR-HPV E6/E7 mRNA was not detected (0/24), and the differences were statistically significant (P<0.001). LCM-PCR showed that five patients were positive for HR-HPV DNA in the area of glandular epithelial lesions and others were negative, which was in good agreement with the E6/E7 mRNA ISH assay (Kappa=0.842, P=0.001). Analysis of the ROC results showed that the AUC of HR-HPV DNA, HR-HPV E6/E7 mRNA, and p16 to identify HPVA and NHPVA were 0.817, 0.817, and 0.692, respectively, with sensitivities of 96.7%, 63.3%, and 80.0% and specificities of 66.7%, 100.0%, and 58.3%, respectively. HR-HPV DNA identified HPVA and NHPVA with higher AUC than p16 (P=0.044). The difference in survival rates between HR-HPV DNA (WTS-PCR assay) positive and negative patients was not statistically significant (P=0.156), while the difference in survival rates between HR-HPV E6/E7 mRNA positive and negative patients, and p16 positive and negative patients were statistically significant (both P<0.05). Multifactorial Cox regression analysis showed that International Federation of Obstetrics and Gynecology (FIGO) staging (HR=19.875, 95% CI: 1.526-258.833) and parametrial involvement (HR=14.032, 95% CI: 1.281-153.761) were independent factors influencing the prognosis of patients with ECA. Conclusions: HR-HPV E6/E7 mRNA is more reflective of HPV infection in ECA tissue. The efficacy of HR-HPV E6/E7 mRNA and HR-HPV DNA (WTS-PCR assay) in identifying HPVA and NHPVA is similar, with higher sensitivity of HR-HPV DNA and higher specificity of HR-HPV E6/E7 mRNA. HR-HPV DNA is more effective than p16 in identifying HPVA and NHPVA. HPV E6/E7 mRNA and p16 positive ECA patients have better survival rates than negative.


Assuntos
Feminino , Humanos , Infecções por Papillomavirus/diagnóstico , Estudos Retrospectivos , Neoplasias do Colo do Útero/patologia , Prognóstico , Proteínas Oncogênicas Virais/genética , Papillomaviridae , Adenocarcinoma/patologia , RNA Mensageiro/genética , Papillomaviridae/genética , RNA Viral/genética
9.
Journal of Forensic Medicine ; (6): 447-451, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1009376

RESUMO

OBJECTIVES@#To establish the menstrual blood identification model based on Naïve Bayes and multivariate logistic regression methods by using specific mRNA markers in menstrual blood detection technology combined with statistical methods, and to quantitatively distinguish menstrual blood from other body fluids.@*METHODS@#Body fluids including 86 menstrual blood, 48 peripheral blood, 48 vaginal secretions, 24 semen and 24 saliva samples were collected. RNA of the samples was extracted and cDNA was obtained by reverse transcription. Five menstrual blood-specific markers including members of the matrix metalloproteinase (MMP) family MMP3, MMP7, MMP11, progestogens associated endometrial protein (PAEP) and stanniocalcin-1 (STC1) were amplified and analyzed by electrophoresis. The results were analyzed by Naïve Bayes and multivariate logistic regression.@*RESULTS@#The accuracy of the classification model constructed was 88.37% by Naïve Bayes and 91.86% by multivariate logistic regression. In non-menstrual blood samples, the distinguishing accuracy of peripheral blood, saliva and semen was generally higher than 90%, while the distinguishing accuracy of vaginal secretions was lower, which were 16.67% and 33.33%, respectively.@*CONCLUSIONS@#The mRNA detection technology combined with statistical methods can be used to establish a classification and discrimination model for menstrual blood, which can distignuish the menstrual blood and other body fluids, and quantitative description of analysis results, which has a certain application value in body fluid stain identification.


Assuntos
Feminino , Humanos , RNA Mensageiro/metabolismo , Teorema de Bayes , Modelos Logísticos , Menstruação , Líquidos Corporais , Saliva , Sêmen , Genética Forense/métodos
10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 109-117, 2023.
Artigo em Chinês | WPRIM | ID: wpr-988186

RESUMO

ObjectiveIn this study, based on ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS/MS) and high-throughput transcriptome sequencing technology(RNA-seq), we investigated the mechanism of Yishen Huashi granules in regulating serum metabolites and renal messenger ribonucleic acid(mRNA) expression to improve diabetic kidney disease(DKD). MethodSD rats were randomly divided into normal group , model group and Yishen Huashi granules group, with 8 rats in each group. The rat model of DKD was established by intraperitoneal injection of streptozotocin. Yishen Huashi granules group was given 5.54 g·kg-1·d-1 of Yishen Huashi granules by gavage, and the normal group and the model group were given the same amount of normal saline for 6 weeks. During the experiment, the body weight and blood glucose of rats were monitored, and the rats were anesthetized 24 hours after the last administration, blood was collected from the inferior vena cava, serum was separated, and renal function, blood lipid, and inflammatory indicators were detected. Kidney tissue of rats was fixed in neutral paraformaldehyde, and stained with hematoxylin-eosin(HE), Masson and periodic acid-Schiff(PAS) to observe the renal pathological changes. UHPLC-MS/MS and RNA-seq were used to identify the changes of serum metabolism and the differences of renal mRNA expression, and real time fluorescence quantitative polymerase chain reaction(Real-time PCR) and Western blot were used to detect the differential mRNA and protein expression in renal tissue to explore the common expression mechanism. ResultCompared with the normal group, rats in the model group showed a decrease in body weight, a significant increase in blood glucose, urinary microalbumin to urinary creatinine ratio(UACR), blood urea nitrogen(BUN), cystatin-C(Cys-C), β2-microglobulin(β2-MG), interleukin-6(IL-6), triglyceride(TG) and total cholesterol(TC), and a significant decrease in total superoxide dismutase(T-SOD)(P<0.01). After the intervention of Yishen Huashi granules, all the indexes were improved to different degrees in rats(P<0.05, P<0.01). Compared with the normal group, the model group showed renal mesangial stromal hyperplasia, fibrous tissue hyperplasia and tubular vacuolar degeneration. Compared with the model group, the renal pathology of rats in Yishen Huashi granules group was improved to a certain extent. A total of 14 target metabolites and 96 target mRNAs were identified, the target metabolites were mainly enriched in 20 metabolic pathways, including sphingolipid metabolism, glycerophospholipid metabolism, and the biosynthesis of phenylalanine, tyrosine and tryptophan. The target mRNAs were enriched to obtain a total of 21 differential mRNAs involved in the TOP20 pathways closely related to glycolipid metabolism. A total of 6 pathways, glycerophospholipid metabolism, arachidonic acid metabolism, purine metabolism, primary bile acid biosynthesis, ascorbic acid and uronic acid metabolism, and galactose metabolism, were enriched by serum differential metabolites and renal differential mRNAs, among them, there were 7 differential metabolites such as phosphatidylethanolamine(PE) and 7 differential mRNAs such as recombinant adenylate cyclase 3(ADCY3). Seven differential metabolites had high predictive accuracy as verified by receiver operating characteristic(ROC) curve, and the results of Real-time PCR and Western blot were highly consistent with the sequencing results. ConclusionYishen Huashi granules can reduce UACR, BUN and other biochemical indexes, correct the disorder of glucose and lipid metabolism, and improve renal function of DKD rats. And its mechanism may be related to the regulation of the level of PE and other blood metabolites, and expression of Phospho1 and other mRNAs in the kidney, of which six pathways, including glycerophospholipid metabolism, may play an important role.

11.
Journal of Medicine University of Santo Tomas ; (2): 1252-1258, 2023.
Artigo em Inglês | WPRIM | ID: wpr-998856

RESUMO

@#Almost a year after the worldwide appearance of the coronavirus (SARS-CoV-2), several novel vaccines of diverse platforms have been successfully developed and administered. Two mRNA vaccines represented a new type of vaccine that comprised of synthetic mRNA molecules containing the code sequence necessary to build the SARS-CoV-2 spike protein. These mRNA vaccines almost single handedly carried the brunt of the US COVID-19 immunization strategy during the past three years. The known and potential benefits of COVID-19 vaccination outweigh the risks and adverse complications. The ongoing COVID-19 pandemic has stimulated unprecedented research on aspects of the vaccines’ ability to reduce the risk of severe infection and death. Likewise, basic immunological studies are pivotal to unraveling the potential and long-term effects of the vaccines as well as to be able to make adjustments to new vaccine development. As the circulating virus strain continues to evolve, updated vaccines will be critical to protecting the population, particularly the elderly and immune compromised.


Assuntos
COVID-19 , Vacinação , Síndrome de COVID-19 Pós-Aguda , Miocardite
12.
Chinese Journal of Thoracic and Cardiovascular Surgery ; (12): 88-91, 2023.
Artigo em Chinês | WPRIM | ID: wpr-995532

RESUMO

Objective:To investigate the relationship between the expression patterns of SMG family members and aortic dissection by comparing the expression levels of SMGs in aortic wall of patients with Stanford type A aortic dissection(AD) and normal controls.Methods:The aortic wall samples were collected from 31 normal controls and 65 patients with Stanford type A aortic dissection. The mRNA levels of SMGs in the aortic wall were quantified by RT-PCR, and the correlations between SMGs and aortic diameters of patients with aortic dissection were analyzed.Results:The results of RT-PCR showed that compared with normal aortic wall, the mRNA levels of SMG3(0.642±0.529 vs. 1.126±0.858, P=0.023), SMG6(0.737±0.652 vs. 1.877±1.902, P=0.005), and SMG7(0.624±0.449 vs. 1.339±0.866, P=0.00067) were obviously increased in aortic wall of patients with aortic dissection, while comparable mRNA levels of SMG1, SMG2, SMG4, SMG5, SMG8 and SMG9 were detected between these two groups. In addition, there was no significant correlation between the expression levels of SMG3, SMG6, SMG7 and aortic diameters. Conclusion:The expression levels of SMG3, SMG6 and SMG7mRNA were significantly increased in patients with aortic dissection, suggesting that they may promote the occurrence of aortic dissection, and targeting SMG family members expected to a novel strategy for the prevention and treatment of aortic dissection.

13.
Chinese Journal of Microbiology and Immunology ; (12): 47-54, 2023.
Artigo em Chinês | WPRIM | ID: wpr-995255

RESUMO

Objective:To investigate the effects of poly(A) tails with different lengths on mRNA expression in vitro and the passage stability of transcription template with poly (A) tail in Escherichia coli ( E. coli). Methods:Plasmids with poly(A) tails of 38, 60, 103, 125 and 126 (60 nt+ 6 nt spacer+ 60 nt) nt were designed and constructed. Then the plasmids were linearized by single enzyme digestion and used as transcription template for preparing enhanced green fluorescent protein (EGFP)-mRNA. EGFP-mRNA containing poly(A) tails of different lengths were transfected into 293T cells and the expression of EGFP was detected by flow cytometry. As to stability test, the template plasmids with poly (A) tail of 125 and 126 nt were transformed into E. coli TransStbl3 and Top10 competent cells. Seven clones were selected for culture and plasmid extraction, and then the plasmids were digested by restriction enzyme and detected by capillary electrophoresis. For passage stability, three correctly sequenced clones of each group were selected for continuous passage at 37℃, and the plasmids were extracted and digested every two generations for capillary electrophoresis. At the same time, the correctly sequenced clones of 125 nt group were also passaged at 30℃, and the plasmids were also extracted and digested every two generations for capillary electrophoresis. Results:The transcription templates with poly(A) tail of different lengths were successfully constructed. Flow cytometry showed that the fluorescence expression of the template plasmids with poly (A) tail of 103 and 125 nt were significantly higher than that of 38 and 60 nt. The fluorescence expression of the plasmid with poly (A) tail of 126 nt was significantly higher than that of all other groups. The percentages of stable sequences of the template plasmid with poly(A) tail of 125 nt in TransStbl3 and Top10 competent cells were 76% and 91%, respectively. The results of continuous passage showed that poly(A) tail of 125 nt could be stable to the 4th generation at 37℃ in both TransStbl3 and Top10 competent cells, and stable to the 16th and 10th generations at 30℃. The percentages of stable sequences of the template plasmid with poly(A) tail of 126 nt in TransStbl3 and Top10 competent cells were 95% and 48%, respectively. The results of continuous passage showed that poly(A) tail of 126 nt could be stable to the 12th generation at 37℃ in both TransStbl3 and Top10 competent cells.Conclusions:The length and composition of poly(A) tail in mRNA affected the expression of target protein. Adding a spacer with a length of 6 nt to poly(A) tail and low temperature culture were both helpful to improve the stability of the template plasmid, which provided a reference for the design and preparation of in vitro transcription template of mRNA vaccine.

14.
Acta Pharmaceutica Sinica B ; (6): 2585-2600, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982858

RESUMO

Mevalonate metabolism plays an important role in regulating tumor growth and progression; however, its role in immune evasion and immune checkpoint modulation remains unclear. Here, we found that non-small cell lung cancer (NSCLC) patients with higher plasma mevalonate response better to anti-PD-(L)1 therapy, as indicated by prolonged progression-free survival and overall survival. Plasma mevalonate levels were positively correlated with programmed death ligand-1 (PD-L1) expression in tumor tissues. In NSCLC cell lines and patient-derived cells, supplementation of mevalonate significantly up-regulated the expression of PD-L1, whereas deprivation of mevalonate reduced PD-L1 expression. Mevalonate increased CD274 mRNA level but did not affect CD274 transcription. Further, we confirmed that mevalonate improved CD274 mRNA stability. Mevalonate promoted the affinity of the AU-rich element-binding protein HuR to the 3'-UTR regions of CD274 mRNA and thereby stabilized CD274 mRNA. By in vivo study, we further confirmed that mevalonate addition enhanced the anti-tumor effect of anti-PD-L1, increased the infiltration of CD8+ T cells, and improved cytotoxic function of T cells. Collectively, our findings discovered plasma mevalonate levels positively correlated with the therapeutic efficacy of anti-PD-(L)1 antibody, and provided the evidence that mevalonate supplementation could be an immunosensitizer in NSCLC.

15.
Acta Pharmaceutica Sinica B ; (6): 1348-1357, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982809

RESUMO

Messenger RNA (mRNA) has drawn much attention in the medical field. Through various treatment approaches including protein replacement therapies, gene editing, and cell engineering, mRNA is becoming a potential therapeutic strategy for cancers. However, delivery of mRNA into targeted organs and cells can be challenging due to the unstable nature of its naked form and the low cellular uptake. Therefore, in addition to mRNA modification, efforts have been devoted to developing nanoparticles for mRNA delivery. In this review, we introduce four categories of nanoparticle platform systems: lipid, polymer, lipid-polymer hybrid, and protein/peptide-mediated nanoparticles, together with their roles in facilitating mRNA-based cancer immunotherapies. We also highlight promising treatment regimens and their clinical translation.

16.
Acta Pharmaceutica Sinica ; (12): 2353-2363, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999142

RESUMO

The successful development and application of mRNA COVID-19 vaccine fully illustrated the great potential and application prospect of mRNA technology in the field of biomedicine. Currently, many companies worldwide are developing drugs and vaccines based on mRNA technology for the prevention and treatment of various diseases. It can be foreseen that with the continuous launch of mRNA drugs, commercial GMP production capacity matching them is also urgent. The optimization of production processes, intelligent manufacturing and other risk control strategies, as well as the control of industrialization costs, will help improve the core competitiveness of mRNA innovative drug development. In view of this, this article will provide an overview of the global production process of mRNA drugs and the progress of related GMP production dynamics, sort out the key chain points of the mRNA industry chain, explore the construction of the mRNA pharmaceutical enterprise value chain and the formation of core competitiveness, and provide reference and reference for the research and development of innovative mRNA drugs and high-quality development in China.

17.
Acta Pharmaceutica Sinica ; (12): 2047-2058, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999118

RESUMO

The in vitro transcribed (IVT) mRNA technology has progressed rapidly and the application of mRNA vaccines in the COVID-19 pandemic made it become the most talked-about topic. Compared with protein drugs, IVT mRNA has a lower cost; it can be modular produced and its sequence can be modified easily, so it has a broad application prospect. However, due to its short history, mRNA drugs face the problem of lacking sufficient clinical data, and there is no quality control standard for mRNA drugs except mRNA vaccines. We overview the sequence design, delivery vectors, administration, application prospect and safety considerations of mRNA drugs. We also discussed the quality control of mRNA drugs briefly.

18.
Acta Pharmaceutica Sinica ; (12): 2098-2110, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999112

RESUMO

Alternative splicing is the key to human gene expression regulation and plays a decisive role in enlarging the diversity of functional proteins. Alternative splicing is an important biomarker in tumor progression, which is closely related to the development of tumors. Tumor cells tend to produce alternative spliceosome that are conducive to their progression. Therefore, targeting regulation of tumor-specific alternative spliceosomes is a potential strategy for tumor therapy. Herein, we provide a brief review of the complex relationship between alternative splicing and tumors. Alternative splicing works by removing non-coding sequences of pre-mRNA and assembling protein-coding fragments in different combinations, ultimately producing proteins with different or even opposite functions. Alternative splicing events can promote the transformation of tumor cells through apoptosis, invasion, metastasis, angiogenesis, and metabolism; they can also influence the effectiveness of cancer immunotherapy by affecting genes that play a key role in the immune pathway. We proposed that direct or indirect targeting of alternative splicing factors and oligonucleotide-based therapies are the main strategies to reverse tumor alternative splicing events. These findings will help us to better understand tumor-related alternative splicing and to develop new strategies for tumor treatment.

19.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 155-163, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1014680

RESUMO

AIM: By analyzing the effect of gambogenic acid (GNA) on the mRNA expression profile of melanoma xenograft model mice, the possible mechanism of GNA in the treatment of melanoma was explored. METHODS: The inhibitory effect of GNA on melanoma cells was studied by measuring the cell survival rate by MTT method in vitro and observing the cell morphology under an inverted microscope. In the in vivo experiment, the effect of GNA on the growth of xenografted tumors in melanoma mice was observed by comparing the results of HE (hematoxylin-eosin) staining and immunohistochemistry (Ki-67), and the tumor weight and tumor weight ratio were recorded. RNA-seq sequencing technology was used to sequence the GNA medium-dose group and the model group, and the screened mRNAs were analyzed by GO and KEGG, and finally the screening results of differentially expressed genes were verified by real-time quantitative fluorescent PCR. RESULTS: After different doses of GNA acted on the melanoma mouse model, a large area of necrosis occurred in the tumor tissue of the model mouse, and the tumor growth was significantly inhibited. A total of 36 differentially expressed mRNAs were identified by mRNA sequencing, of which 30 were up-regulated and 6 were down-regulated. The possible functions of the mRNAs were predicted according to the genomic adjacency analyzed by GO and KEGG. The expression of the selected differential mRNAs was further verified by real-time quantitative PCR technology. The results showed that the mRNA expressions of Cidec, Ces1d, Mylk4, and Igkv9-123 were up-regulated, and the mRNA expressions of Ryr3 and Hapln1 were down-regulated. CONCLUSION: GNA can inhibit the proliferation of melanoma cells in vitro and in vivo, and its mechanism is related to the regulation of cytokine-cytokine receptor interaction, NF-κB, MAPK, and other pathways of mRNA expression.

20.
Chinese Pharmacological Bulletin ; (12): 463-469, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013831

RESUMO

Aim To explore the effect of γ-ray on the mRNA,protein expression levels and metabolic activity level of the key drug metabolic enzyme CYP3A1 in rat liver. Methods Wistar rats were randomly divided into control group, 24 h post-radiation group and 72 h post-radiation group. The experimental group was exposed to total body irradiation of single 6 Gy γ-ray. Blood was collected from the orbital venous plexus for blood routine examination and biochemical analysis 24 h and 72 h after irradiation, and liver tissue was prepared for quantifying expression of CYP3A1 mRNA and liver-specific microRNA (miR-122-5p) through RT-PCR. The expression level of CYP3A1 protein was analyzed by Western blot, and the metabolic activity level of CYP3A1 detected by the specific substrate midazolam combined with LC-MS method. Results Com¬pared with the control group, the weights of the rats in the radiation group significantly decreased, and the number of white blood cells was markedly reduced. Simultaneously, the activities of alanine aminotrans-ferase and alkaline phosphatase continuously descended, as well as the levels of total bilirubin and bile acid significantly increased, which indicated that the liver may be damaged after radiation. The relative expression of CYP3A1 mRNA continued to increase significantly 24 h and 72 h after irradiation. CYP3A1 protein expression and metabolic activity levels showed an obvious increasing trend 24 h after irradiation, and rose significantly 72 h after irradiation compared with the control group. At the same time, the expression of miR-122-5p in liver of rats in the 24 h and 72 h post-radiation group continued to decrease rapidly compared with the control group. Conclusions γ-ray radiation may arouse damage effect on liver, which leads to the continuous up-regulation of the mRNA and protein expression levels of the capital metabolic enzyme CYP3A1 in liver tissue, as well as the elevation of the metabolic activity level. The regulatory mechanism might be related to miR-122-5p.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA