Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Chinese Journal of Biotechnology ; (12): 1500-1510, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771779

RESUMO

MarR family transcription regulators are ubiquitous among bacteria and archaea. They extensively control multiple cellular processes and elaborately regulate the expression of genes involved in virulence, stress response and antibiotics at translational level. In Xanthomonas campestris pv. campestris, insertional inactivation of MarR family transcription regulator HpaR (XC2827) resulted in significantly decrease in virulence and increase in the production of the extracellular proteases. Here, we reported that the genome of Xcc 8004 encodes nine MarR family transcription regulators. The MarR family transcription regulators, HpaR (XC2827) and XC0449, were heterologous expressed and purified. In vitro MST and Pull-down assay confirmed the physical interaction between HpaR and XC0449. Phenotypical assay determined that deletion of XC0449 resulted in substantial virulence attenuation. In vitro EMSA, in vivo qRT-PCR and GUS activity assay identified that HpaR and XC0449 coordinately act as the transcriptional activator to regulate the expression of the virulence-associated gene XC0705, and eventually control the bacterial virulence and the production of extracellular proteases.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição , Virulência , Xanthomonas campestris
2.
Yonsei Medical Journal ; : 534-540, 1998.
Artigo em Inglês | WPRIM | ID: wpr-207246

RESUMO

We analyzed the fluoroquinolone resistance mechanism of 28 isolates of ciprofloxacin-resistant E. coli from patients who received ciprofloxacin as a regimen of a selective gut decontamination. Isolates distinctive by infrequent restriction site polymerase chain reaction (IRS-PCR) were subjected to Hinf I restriction fragment length polymorphism analysis, single-stranded conformation polymorphism (SSCP), and nucleotide sequencing of the quinolone resistance determining region (QRDR) in gyrA. Double mutations in QRDR of gyrA (Ser83 Leu and Asp87Asn) were found from most of the strains. Nucleotide sequencing of the marR locus showed that 18 out of 28 (64%) ciprofloxacin-resistant E. coli strains had three types of base change in marR loci: a double-base change at nucleotides 1628 and 1751, or 1629 and 1751: and a single-base change at 1751. However, all the mutated strains showed no tolerance to cyclohexane test, suggesting the mutation in the marR region had no influence on overexpression of the MarA protein. In conclusion, mutation in gyrA was the main mechanism of ciporfloxacin resistance in E. coli from patients with selective gut decontamination. Therefore, mutation in the mar region did not influence the levels of ciprofloxacin resistance in our isolates.


Assuntos
Humanos , Ciprofloxacina/farmacologia , DNA Topoisomerases Tipo II/genética , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Mutação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA