Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Journal of Clinical Hepatology ; (12): 413-418, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1007263

RESUMO

Mitophagy is a type of selective autophagy during which cells specifically remove damaged mitochondria in response to nutrient deficiency or external stimulation and thus maintain the integrity of mitochondrial function and cellular homeostasis. In recent years, a large number of studies have shown that dysfunction of mitophagy is closely associated with the development and progression of various liver-related diseases such as nonalcoholic fatty liver disease, drug-related liver injury, viral hepatitis, and hepatocellular carcinoma. This article summarizes the specific mechanisms of mitophagy in regulating liver-related diseases and further elaborates on the potential therapeutic targets of mitophagy in liver-related diseases, in order to provide more effective therapeutic strategies for the clinical treatment of liver diseases.

2.
China Pharmacy ; (12): 44-50, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005212

RESUMO

OBJECTIVE To study the mechanism of oxymatrine inducing apoptosis of osteosarcoma MG63 cell line based on mitophagy mediated by cyclooxygenase-2 (COX-2)/PTEN-induced putative kinase-1 (PINK1)/Parkinson disease protein-2 (Parkin) signaling pathway. METHODS MG63 cells were treated with 2.0, 4.0, 8.0 mg/mL oxymatrine and 6 μmol/L 5-fluorouracil, then the apoptotic rate, the expression of apoptosis-related proteins [B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax)], the proportion of decrease in mitochondrial membrane potential, the level of mitophagy as well as the protein expressions of PINK1, Parkin, and microtubule-associated protein 1 light chain-3Ⅱ (LC3-Ⅱ) were detected. PINK1 small interfering RNA (siRNA) was adopted to intervene in the expression of PINK1, the cells were divided into control group, PINK1 siRNA group, oxymatrine group, and PINK1 siRNA+oxymatrine group; the protein expressions of PINK1, Parkin, and LC3-Ⅱ, the proportion of decrease in mitochondrial membrane potential (MMP) as well as apoptotic rate were detected. The lentivirus infection technique was used to overexpress COX-2, the cells were divided into control group, oxymatrine group, COX-2 group, and COX-2+oxymatrine group. The protein expressions of COX-2, PINK1, and Parkin, as well as the proportion of decrease in MMP were detected. RESULTS After being treated with oxymatrine, the apoptotic rate, the protein expressions of Bax, PINK1, Parkin, and LC3-Ⅱ, the level of mitophagy as well as the proportion of decrease in MMP were significantly increased (P<0.05), while the protein expression of Bcl-2 was significantly decreased (P<0.05). Compared with the oxymatrine group, the protein expressions of PINK1, Parkin, and LC3-Ⅱ, apoptotic rate and the proportion of decrease in MMP were significantly decreased in PINK1 siRNA+oxymatrine group (P<0.05). Compared with the oxymatrine group, the protein expression of COX-2 in the COX-2+oxymatrine group was increased significantly (P<0.05), while the protein expressions of PINK1 and Parkin as well as the proportion of 526087266@qq.com decrease in MMP were decreased significantly (P<0.05). CONCLUSIONS Oxymatrine can mediate the overactivity of mitophagy based on the PINK1/Parkin signaling pathway by inhibiting COX-2 expression, thus promoting the apoptosis of the MG63 osteosarcoma cell line.

3.
Chinese Pharmacological Bulletin ; (12): 461-468, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013638

RESUMO

Aim To research the neuroprotective effect of Haikun Shenxi (HKSX) medicated serum on N2a/ App695 cells and the underlying mechanism. Methods HKSX medicated serum was prepared and carbohydrate components in it was analyzed using high performance thin layer chromatography (HPTLC) . N2a/ App695 cells were intervened with HKSX medicated serum, the cytotoxicity of HKSX medicated serum was measured by MTT; AP[_

4.
Chinese Pharmacological Bulletin ; (12): 224-228, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013629

RESUMO

In addition to providing energy for cells, mitochondria also participate in calcium homeostasis, cell information transfer, cell apoptosis, cell growth and differentiation. Therefore, maintaining mitochondrial homeostasis is very crucial for the body to carry out normal life activities. Ubiquitination, a post-translational modification of proteins, is involved in various physiological and pathological processes of cells by regulating mitochondrial homeostasis. However, the mechanism by which ubiquitination regulates mitochondrial homeostasis has not been summarized, especially the effect of Parkin protein on cardiovascular diseases. In this paper, the specific mechanism of mitochondrial homeostasis regulated by ubiquitination of Parkin protein is discussed, and the influence of mitochondrial homeostasis imbalance on cardiovascular diseases is reviewed, with a view to providing potential therapeutic strategies for the clinical treatment of cardiovascular diseases.

5.
Chinese Pharmacological Bulletin ; (12): 162-170, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013611

RESUMO

Aim To investigate the targeting mechanism of miR-23b on PINKl/Parkin pathway in transdifferentiation of NRK-52E cellsinduced by TGF-β1, and to elucidate the intervention mechanism of Qingshen granules drug-containing serum on NRK-52E cell transdifferentiation. Methods Ultra-high performance liquid chromatography ( UPLC ) fingerprinting method was used to analyze Qingshen granules. The NRK-52E transdifferentiation model induced by TGF-β1 was constructed. The NRK-52E cells were divided into simulated no-load control group, miR-23b-5p simulated group, inhibitor no-load control group, and miR-23b-5p inhibitor group, after transfection with siRNA, and the effect of miR-23b-5p on PINK1 expression was ob-served. The NRK-52E cells were then divided into normal group, TGF-(31 group, Qingshen granule group, miR-23 b-mimic group, miR-23 b-mimic group, and miR-23b-mimic + Qingshen granule group. Western blot was used to detect the expression of Pinkl, Parkin, LC3 n, Beclin-1, P62 and a-SMA proteins, and RT- PCR was used to detect the expression of miR-23 b-5p, Pinkl, Parkin, Beclin-1 and a-SMA mRNA in NRK- 52E cells. Dual-Luciferase Reporter gene experiment was used to detect the targeting relationship between miR-23b-5p and PINKL Results UPLC fingerprinting method found 11 active components in Qingshen granules. After overexpression of miR-23b-5p, the expression of PINkl mRNA significantly increased (P 0. 05 ). The experimental results showed that the expressions of miR- 23b-5p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 II/ I ratio in TGF-β1 group were significantly lower than those in normal group, but the expressions of P62 and a-SMA were significantly higher than those in normal group ( P <0.05). The expressions of miR-23 b-5 p, Pinkl, Parkin, Beclin-1, LC3 II and LC3 11/ I ratio in Qingshen granule group and miR-23 b-mimic group were significantly higher than those in TGF-β1 group, and the expressions of P62 and a-SMA were significantly lower than those in TGF-β1 group (P < 0. 05 ). The performance of miR-23 b-mimic + Qingshen granule group was better than that of miR-23 b-mimic group (P < 0. 05 ). Conclusions Qingshen granules can up- regulate the expression of miR-23b-5p in NRK-52E cellsand inhibit the transdifferentiation process of NRK- 52E cells by enhancing the mitochondrial autophagy activity mediated by PINKl/Parkin pathway.

6.
Chinese Pharmacological Bulletin ; (12): 308-316, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013586

RESUMO

Aim To explore the effect of berberine (B E) on RSV infected HEp-2 cells and the related mechanism. Methods HEp-2 cells were infected with RSV and treated with BE. Cell viability was assessed using the CCK-8 assay. Protein expression levels of NLRP3, ASC, caspase-1, PINK1, Parkin, Beclinl, p62, LC3 I,LC3 II,and BNIP3 in HEp-2 cells were detected by Western blot. The secretion level of IL-1 p in HEp-2 cells was measured using ELISA. Apoptosis rate and mitochondrial membrane potential of HEp-2 cells were examined by flow cytometry. Mitochondrial ROS (mtROS) in HEp-2 cells was detected through MitoSOX staining. Colocalization of mitochondria and autophagosomes in HEp-2 cells was investigated using immunofluorescence staining. Cyclosporin A was used for validation experiments. Results BE could significantly improve the activity of RSV-infected HEp-2 cells,reduce the apoptosis rate (P < 0. 05), and decrease the activation level of NLRP3 inflammasomes and IL-lp level (P <0. 05); BE improved mitochondrial function by increasing mitochondrial membrane potential and ATP levels,and reduced mtROS. BE significantly promoted the colocalization of mitochondria-autophagosome in RSV infected cells, inducing PINK1/ Parkin and BNIP3 to mediate mitochondrial autophagy; cyclosporine A aggravated RSV infection. Conclusions BE has protective effects on HEp-2 cells infected by RSV. The mechanism may be related to the inhibitory effect of BE on the production of mtROS and the activation of NLRP3 inflammasomes by inducing PINK1/ Parkin and BNIP3-mediated mitochondrial autophagy.

7.
Acta Pharmaceutica Sinica B ; (6): 190-206, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011236

RESUMO

Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.

9.
Arq. bras. cardiol ; 120(10): e20220750, 2023. graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1520127

RESUMO

Resumo Fundamento A dexmedetomidina (DEX), um agonista específico do receptor α2-adrenérgico, é protetora contra lesão de isquemia/reperfusão miocárdica (I/R). No entanto, a associação entre a cardioproteção induzida pelo pré-condicionamento DEX e a supressão da mitofagia permanece pouco clara. Objetivo Portanto, nosso objetivo foi investigar se o pré-condicionamento com DEX alivia a I/R, suprimindo a mitofagia via ativação do receptor α2-adrenérgico. Método Sessenta corações de ratos isolados foram tratados com ou sem DEX antes de induzir isquemia e reperfusão; um antagonista do receptor α2-adrenérgico, a ioimbina (YOH), também foi administrado antes da isquemia, isoladamente ou com DEX. A frequência cardíaca (FC), pressão diastólica do ventrículo esquerdo (PDVE), pressão diastólica final do ventrículo esquerdo (PDFVE), taxa máxima e mínima de desenvolvimento da pressão ventricular esquerda (±dp/dtmax) e tamanho do infarto do miocárdio foram medidos. A ultraestrutura mitocondrial e as autofagossomas foram avaliadas por microscopia eletrônica de transmissão. O potencial de membrana mitocondrial e os níveis de espécies reativas de oxigênio (ROS) foram medidos usando os ensaios JC-1 e diacetato de diclorodi hidrofluoresceína, respectivamente. Os níveis de expressão das proteínas associadas à mitofagia Beclin1, relação LC3II/I, p62, PINK1 e Parkin foram detectados por western blotting. Resultados Em comparação com o grupo controle, no grupo isquemia/reperfusão, a FC, PDVE e ±dp/dtmax foram notavelmente diminuídas (p<0,05), enquanto os tamanhos da PDFVE e do infarto aumentaram significativamente (p<0,05). O pré-condicionamento com DEX melhorou significativamente a disfunção cardíaca, reduziu o tamanho do infarto do miocárdio, manteve a integridade estrutural mitocondrial, aumentou o potencial de membrana mitocondrial, inibiu a formação de autofagossomas e diminuiu a produção de ROS e a relação Beclin1, relação LC3II/I, expressão PINK1, Parkin e p62(p<0,05). Quando DEX e YOH foram combinados, o YOH cancelou o efeito da DEX, enquanto o uso de YOH sozinha não teve efeito. Conclusão Portanto, o pré-condicionamento DEX foi cardioprotetor contra I/R em ratos, suprimindo a mitofagia por meio da ativação do receptor α2-adrenérgico.


Abstract Background Dexmedetomidine (DEX), a specific α2-adrenergic receptor agonist, is protective against myocardial ischemia/reperfusion injury (MIRI). However, the association between DEX preconditioning-induced cardioprotection and mitophagy suppression remains unclear. Objective Hence, we aimed to investigate whether DEX preconditioning alleviates MIRI by suppressing mitophagy via α2-adrenergic receptor activation. Method Sixty isolated rat hearts were treated with or without DEX before inducing ischemia and reperfusion; an α2-adrenergic receptor antagonist, yohimbine (YOH), was also administered before ischemia, alone or with DEX. The heart rate (HR), left ventricular diastolic pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximal and minimal rate of left ventricular pressure development (±dp/dtmax), and myocardial infarction size were measured. The mitochondrial ultrastructure and autophagosomes were assessed using transmission electron microscopy. Mitochondrial membrane potential and reactive oxygen species (ROS) levels were measured using JC-1 and dichloride hydrofluorescein diacetate assays, respectively. The expression levels of the mitophagy-associated proteins Beclin1, LC3II/I ratio, p62, PINK1, and Parkin were detected by western blotting. Results Compared with the control group, in the ischemia/reperfusion group, the HR, LVDP, and ±dp/dtmax were remarkably decreased (p< 0.05), whereas LVEDP and infarct sizes were significantly increased (p< 0.05). DEX preconditioning significantly improved cardiac dysfunction reduced myocardial infarction size, maintained mitochondrial structural integrity, increased mitochondrial membrane potential, inhibited autophagosomes formation, and decreased ROS production and Beclin1, LC3II/I ratio, PINK1, Parkin, and p62 expression(p< 0.05). When DEX and YOH were combined, YOH canceled the effect of DEX, whereas the use of YOH alone had no effect. Conclusion Therefore, DEX preconditioning was cardioprotective against MIRI in rats by suppressing mitophagy via α2-adrenergic receptor activation.

10.
Acta Pharmaceutica Sinica ; (12): 3339-3348, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999079

RESUMO

Isoliquiritigenin (ISL) is a flavonoid compound isolated from licorice. It possesses excellent antioxidant and anti-diabetic activities. This study aims to investigate the molecular mechanism underlying the alleviatory effect of ISL on energy metabolism imbalance caused by type 2 diabetes mellitus (T2DM). 8-week-old male C57BL/6J mice were used in in vivo experiments. The high-fat-high-glucose diet combined with intraperitoneal injection of streptozotocin was applied to establish T2DM animal model. All animal experiments were performed in accordance with the Institutional Guidelines of Laboratory Animal Administration issued by the Committee of Ethics at Beijing University of Chinese Medicine. HepG2 cells were used in in vitro experiments. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (RT-qPCR) were used to examine the protein and mRNA levels of mitochondrial function-related targets. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in HepG2 cells were measured by the flow cytometry. Additionally, the molecular docking of ISL and key target proteins was analyzed. It was found that ISL significantly inhibited the activity of mitochondrial respiratory chain complex I and increased the protein levels of uncoupling protein 2 (UCP2) in the livers of mice and HepG2 cells. It also obviously decreased the ROS levels and increased the MMP levels in cultured HepG2 cells. In addition, ISL promoted mitochondrial biogenesis by activating proliferator-activated receptor gamma co-activator 1α (PGC-1α) and enhanced mitophagy by upregulating Parkin. It also improved mitochondrial fusion by increasing the mRNA and protein levels of mitofusin 2 (MFN2). In conclusion, ISL alleviates energy metabolism imbalance caused by T2DM through suppression of excessive mitochondrial oxidative phosphorylation and promotion of mitochondrial biogenesis, mitophagy, and fusion.

11.
Chinese Journal of Contemporary Pediatrics ; (12): 751-758, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982023

RESUMO

OBJECTIVES@#To study the effect of ligustrazine injection on mitophagy in neonatal rats with hypoxic-ischemic encephalopathy (HIE) and its molecular mechanism.@*METHODS@#Neonatal Sprague-Dawley rats, aged 7 days, were randomly divided into a sham-operation group with 8 rats, a model group with 12 rats, and a ligustrazine group with 12 rats. The rats in the model group and the ligustrazine group were used to establish a neonatal rat model of HIE by ligation of the left common carotid artery followed by hypoxia treatment, and blood vessels were exposed without any other treatment for the rats in the sham-operation group. The rats in the ligustrazine group were intraperitoneally injected with ligustrazine (20 mg/kg) daily after hypoxia-ischemia, and those in the sham-operation group and the model group were intraperitoneally injected with an equal volume of normal saline daily. Samples were collected after 7 days of treatment. Hematoxylin and eosin staining and Nissl staining were used to observe the pathological changes of neurons in brain tissue; immunohistochemical staining was used to observe the positive expression of PINK1 and Parkin in the hippocampus and cortex; TUNEL staining was used to measure neuronal apoptosis; Western blotting was used to measure the expression levels of the mitophagy pathway proteins PINK1 and Parkin and the autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3), and ubiquitin-binding protein (P62).@*RESULTS@#Compared with the sham-operation group, the model group had a significant reduction in the number of neurons, an increase in intercellular space, loose arrangement, lipid vacuolization, and a reduction in Nissl bodies. The increased positive expression of PINK1 and Parkin, apoptosis rate of neurons, and protein expression levels of PINK1, Parkin, Beclin1 and LC3 (P<0.05) and the decreased protein expression level of P62 in the hippocampus were also observed in the model group (P<0.05). Compared with the model group, the ligustrazine group had a significant increase in the number of neurons with ordered arrangement and an increase in Nissl bodies, significant reductions in the positive expression of PINK1 and Parkin, the apoptosis rate of neurons, and the protein expression levels of PINK1, Parkin, Beclin1, and LC3 (P<0.05), and a significant increase in the protein expression level of P62 (P<0.05).@*CONCLUSIONS@#Ligustrazine can alleviate hypoxic-ischemic brain damage and inhibit neuronal apoptosis in neonatal rats to a certain extent, possibly by inhibiting PINK1/Parkin-mediated autophagy.


Assuntos
Ratos , Animais , Hipóxia-Isquemia Encefálica/metabolismo , Animais Recém-Nascidos , Ratos Sprague-Dawley , Proteína Beclina-1 , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo
12.
Chinese Journal of Endocrinology and Metabolism ; (12): 522-526, 2023.
Artigo em Chinês | WPRIM | ID: wpr-994355

RESUMO

Diabetic cardiomyopathy is a myocardial complication associated with abnormal glucose metabolism and dyslipidiaemia, which increases the risk of death and heart failure in diabetic patients. Mitochondrial dysfunction is involved in the occurrence and development of diabetic cardiomyopathy. Recent studies have confirmed that scavenging damaged mitochondria in cardiomyocytes through mitophagy can restore mitochondrial homeostasis, reduce oxidative stress and improve diabetic cardiomyopathy. Therefore, this article provides a comprehensive review of the mechanisms and characteristics of mitochondrial autophagy in diabetic cardiomyopathy. It aims to offer new insights and theoretical basis for the prevention and treatment of diabetic cardiomyopathy.

13.
Chinese Journal of Pharmacology and Toxicology ; (6): 555-556, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992224

RESUMO

OBJECTIVE Mitochondria plays a crucial role in cellular homeostasis by regulating various pro-cesses,including calcium signaling and mitophagy.This study aimed to explore the involvement of prohibitin 2(PHB2),an inner mitochondrial membrane protein,in the modulation of mitochondrial calcium dynamics and mitoph-agy.METHODS HEK293T cells were used as the experi-mental cells and were divided into control,PHB2 knock-down,and PHB2 overexpression groups.To evaluate mitochondrial calcium dynamics,Rhod-2 AM and Mito-Tracker Green fluorescence dyesrhod-2 staining and laser confocal microscopy were employed to visualize mito-chondrial calcium imaging.Additionally,Green-5N was utilized to measure the rate of mitochondrial calcium uptake.The mitochondrial membrane potential was assessed using JC-10 staining and laser confocal micros-copy,while cellular ATP levels were determined using ATP assay kits.Furthermore,mitochondrial autophagy was induced by treatment with CCCP,and the expression lev-els of TOM20,LC3,and PARKIN,key mitophagy-related proteins,were analyzed using Western blotting.RESULTS The results demonstrated that compared to the control group,the overexpression of PHB2 increased mitochon-drial calcium concentration,mitochondrial calcium uptake rate,ATP level and expression levels of LC3 and PAR-KIN,but decreased mitochondrial membrane potential and TOM20 expression.In contrast,PHB2 knockdown reduced mitochondrial calcium concentration,ATP level and expression levels of LC3 and PARKIN,but elevated mitochondrial membrane potential,and TOM20 expres-sion.CONCLUSION This study provides evidence that PHB2 plays a vital role in regulating mitochondrial calci-um dynamics,which in turn influences mitochondrial func-tion and modulates mitochondrial autophagy.These find-ings contribute to our understanding of the molecular mechanisms underlying the interplay between PHB2,mitochondrial calcium signaling,and mitophagy.

14.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 735-740, 2023.
Artigo em Chinês | WPRIM | ID: wpr-988718

RESUMO

VDAC1(voltage dependent anion channel 1)is an important channel protein on the outer mitochondrial outer membrane, which regulates mitophagy, participates in the regulation of inflammatory cytokines and the activation of the inflammasome, hence being crucial to the inflammatory response. Patients with obstructive sleep apnea syndrome (OSAS) suffer neuroinflammation due to intermittent hypoxia and increased oxidative stress, leading to chronic damage and neuronal cell apoptosis, and eventually develop cognitive impairment. Since OSAS patients' cognitive impairment is significantly influenced by inflammation, and VDAC1 regulates the activation of the inflammasome, the relationship between OSAS and VDAC1, mitophagy, as well as inflammation are reviewed here. We hope that this study can provide a new breakthrough in mitophagy and inflammation in patients with cognitive dysfunction caused by OSAS.

15.
Chinese Journal of Biotechnology ; (12): 3464-3480, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1007970

RESUMO

Mitophagy is a process whereby cells selectively remove mitochondria through the mechanism of autophagy, which plays an important role in maintaining cellular homeostasis. In order to explore the effect of mitophagy genes on the antioxidant activities of Saccharomyces cerevisiae, mutants with deletion or overexpression of mitophagy genes ATG8, ATG11 and ATG32 were constructed respectively. The results indicated that overexpression of ATG8 and ATG11 genes significantly reduced the intracellular reactive oxygen species (ROS) content upon H2O2 stress for 6 h, which were 61.23% and 46.35% of the initial state, respectively. Notable, overexpression of ATG8 and ATG11 genes significantly increased the mitochondrial membrane potential (MMP) and ATP content, which were helpful to improve the antioxidant activities of the strains. On the other hand, deletion of ATG8, ATG11 and ATG32 caused mitochondrial damage and significantly decreased cell vitality, and caused the imbalance of intracellular ROS. The intracellular ROS content significantly increased to 174.27%, 128.68%, 200.92% of the initial state, respectively, upon H2O2 stress for 6 h. The results showed that ATG8, ATG11 and ATG32 might be potential targets for regulating the antioxidant properties of yeast, providing a new clue for further research.


Assuntos
Mitofagia/genética , Saccharomyces cerevisiae/genética , Antioxidantes , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio
16.
Chinese Pharmacological Bulletin ; (12): 1957-1965, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013960

RESUMO

Aim To explore the potential mechanism of Bawei Chenxiang powder against ischemie heart disease (IHD) through mitophagy based on network pharmacology, molecular docking and verification in vitro. Methods The targets of serum constituents of Bawei Chenxiang powder were mined by Swiss target predic-tion, and then the targets related to IHD and mitophagy were selected from Genecards, NCBI and OMIM data-bases to obtain the intersection targets of the three as the potential targets of Bawei Chenxiang powder for the treatment of IHD through mitophagy. Then the "ingre-dients-disease-potential target " network and " protein-protein interaction" (PPI) network were constructed to perform network analysis in order to screen the key ac-tive ingredients and core targets, using Autodock vina software for molecular docking operation. The targets CO function enrichment analysis and KEGG pathway enrichment analysis were analyzed by DAVID databas-es. The effeets of Bawei Chenxiang powder containing serum on celi viability, levels expressions mitophagy and key signaling pathway related protein in H9C2 cells were investigated by hypoxia-induced injury of H9c2 myocardial cells model in vitro. Results The 9 key active compounds and 8 core targets of Bawei Chenxiang powder were screened; molecular docking showed a good binding ability of key active ingredients and core targets. KEGG pathway enrichment analysis showed that the effect of Bawei Chenxiang powder on IHD through mitophagy was related to EGFR, PI3K-Akt, MAPK, FoxO signaling pathway, etc. Celi ex-periments showed that Bawei Chenxiang powder containing serum treatment could significantly improve the survival rate by hypoxia-induced injury in H9c2, the expression of LC3II and p62 were significantly down-regulated, and the expressions of p-PI3K/PI3K and p-AKT/AKT were significantly up-regulated. Conclu-sions Bawei Chenxiang powder plays an anti-IHD role by regulating mitophagy, which may be involved in AKT1, STAT3, MAPK3 and EGFR and other targets, through quercetin, Kaempferol, Naringenin and De-hydrodiisoeugenol as well as other components. Its mechanism may be related to improving PI3K-AKT pathway.

17.
Chinese Pharmacological Bulletin ; (12): 1189-1194, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013795

RESUMO

Aim To explore the protective effect of Zishen Huoxue Prescription on OGD/R-induced primary hippocampal neuron damage in rats and the possible mechanism. Methods After the isolated primary hippocampal neurons were identified by immunofluorescence, OGD/R induced neuronal damage, and the changes of autophagic flux at different re-oxygenation time were observed by confocal laser scanning microscopy. After OGD/R-induced primary hippocampal neurons were intervened with serum containing Zishen Huoxue Prescription, cell viability was detected by CCK-8, cell apoptosis was detected by flow cytometry, autophagosomes were detected by transmission electron microscopy, and autophagy-related protein expressions were detected by Western blot. Results 10% Zishen Huoxue Prescription-containing serum could significantly improve cell viability and reduce the proportion of cell apoptosis, increase the number of autophagosomes in neurons, and up-regulate the expression of autophagy-related protein PINK1, Parkin, and pATG16L1. Conclusions Zishen Huoxue Prescription can effectively resist OGD/R-induced apoptosis of primary hippocampal neurons in rats, and its effect may be related to the regulation of PINK1-Parkin pathway to promote mitophagy.

18.
Chinese Pharmacological Bulletin ; (12): 1557-1565, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013738

RESUMO

Aim To predict the potential mechanism of ophiopogonin D (OPD) against pulmonary fibrosis by network pharmacology, and further verify it by experiment in vivo. Methods This study found that ophiopogon was the most frequently used drug in the treatment of pulmonary fibrosis with deficiency of Qi and Yin through data mining. In order to explore its material basis, network pharmacology analysis was carried out. A model of pulmonary fibrosis was established by bleomycin, and different concentrations of ophiopogonin D were administered to verify the results of the pharmacological network. Results Firstly, through network pharmacology analysis, it was found that mitophagy might be the potential target for ophiopogon to exert anti-pulmonary fibrosis effect. Meanwhile, network topology analysis showed that OPD had the greatest relationship with mitophagy. Animal experiments showed that OPD could relieve pulmonary fibrosis and reduce collagen deposition in mice. At the same time, the detection of mitophagy related proteins showed that the compound could increase the expression of PINK1 and Parkin proteins, reduce the content of P62 protein in lung tissue, and reduce the intracellular ROS level. Conclusions OPD can improve mitochondrial function and play an anti-pulmonary fibrosis role by promoting PINKl/Parkin dependent mitophagy in lung tissue.

19.
Chinese Pharmacological Bulletin ; (12): 1406-1411, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013733

RESUMO

Dj-l is a protein encoded by PARK7 gene, a member of the peptidase C56 protein family. Defects in PARK7 gene may lead to autosomal recessive early-onset Parkinson ' s disease. Dj-1 is a multifunctional protein that acts as an active androgen receptor-mediated transcriptional regulator, a REDOX sensitive molecular chaperone, an oxidative stress sensor, and it also protects neurons from oxidative stress and cell death. In addition, DJ-1 is also associated with mitochondria, energy metabolism, mitochondrial homeostasis, mitophagy mitochondria-associated endoplasmic reticulum membranes and other life processes. However, the precise function of DJ-1 protein is not well understood. This paper reviews the effect, mechanism and molecular basis of DJ-1 protein in regulating mitochondrial function, and discusses its potential value in combination with clinical diseases. It has good timeliness, necessity, innovation and science, and also helps to provide new targets and ideas for clinical drug development.

20.
Acta Pharmaceutica Sinica B ; (6): 4477-4501, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1011189

RESUMO

Pancreatic cancer is a more aggressive and refractory malignancy. Resistance and toxicity limit drug efficacy. Herein, we report a lower toxic and higher effective miriplatin (MPt)-loaded liposome, LMPt, exhibiting totally different anti-cancer mechanism from previously reported platinum agents. Both in gemcitabine (GEM)-resistant/sensitive (GEM-R/S) pancreatic cancer cells, LMPt exhibits prominent anti-cancer activity, led by faster cellular entry-induced larger accumulation of MPt. The level of caveolin-1 (Cav-1) determines entry rate and switch of entry pathways of LMPt, indicating a novel role of Cav-1 in nanoparticle entry. After endosome-lysosome processing, in unchanged metabolite, MPt is released and targets mitochondria to enhance binding of mitochondria protease LONP1 with POLG and TFAM, to degrade POLG and TFAM. Then, via PINK1-Parkin axis, mitophagy is induced by POLG and TFAM degradation-initiated mitochondrial DNA (mtDNA) replication blocking. Additionally, POLG and TFAM are identified as novel prognostic markers of pancreatic cancer, and mtDNA replication-induced mitophagy blocking mediates their pro-cancer activity. Our findings reveal that the target of this liposomal platinum agent is mitochondria but not DNA (target of most platinum agents), and totally distinct mechanism of MPt and other formulations of MPt. Self-assembly offers LMPt special efficacy and mechanisms. Prominent action and characteristic mechanism make LMPt a promising cancer candidate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA