Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 123-133, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978458

RESUMO

ObjectiveTo preliminarily predict the active ingredients, targets, and signaling pathways of modified Zhenwutang in the treatment of chronic renal failure (CRF) based on network pharmacology and explore its potential mechanism for delaying disease progression through molecular docking and animal experiments. MethodThe effective ingredients and targets of modified Zhenwutang were obtained from the HERB database. The targets related to CRF were obtained from the GeneCards. The intersection target genes were obtained using Venny 2.1 software and a protein-protein interaction (PPI) network was constructed using the STRING. The core targets for treating CRF with modified Zhenwutang were screened using Cytoscape 3.9.1 software. The intersection genes were analyzed using Metascape database for gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking validation was performed using AutoDockTools 1.5.6 software for the key targets and active ingredients. An experimental CRF model was established in rats by administering adenine via gavage for 12 weeks, followed by intervention with modified Zhenwutang and benazepril hydrochloride for four weeks. After treatment, the rats were euthanized, and immunohistochemistry (IHC), immunofluorescence (IF), real-time quantitative polymerase chain reaction (Real-time PCR), and western blot were performed to detect the expression levels of prolyl hydroxylase domain-containing proteins 1 (PHD1), prolyl hydroxylase domain-containing proteins 2 (PHD2), hypoxia-inducible factor-1α (HIF-1α), and α-smooth muscle actin (α-SMA) in the renal tissues of the rats. ResultA total of 426 drug target genes of modified Zhenwutang were obtained from the HERB database. A total of 2 698 target genes related to CRF were obtained from the GeneCards database. There were 154 intersection genes between the drug and the disease. Eight core targets were identified, including albumin (ALB), protein kinase B1 (Akt1), tumor necrosis factor (TNF), interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), tumor protein p53 (TP53), and interleukin-1β (IL-1β), which might be closely related to the treatment of CRF with modified Zhenwutang. KEGG enrichment analysis predicted that the main mechanism of modified Zhenwutang in treating CRF involved lipid and atherosclerosis, HIF-1 signaling pathway, cell apoptosis, and nuclear factor kappa B (NF-κB) signaling pathway. Molecular docking results showed that the ingredients of modified Zhenwutang had stable binding activity with the core targets ALB, Akt1, TNF, IL-6, INS, VEGFA, TP53, and IL-1β, which may regulate inflammation and cell apoptosis by affecting the target proteins. The animal model validation results demonstrated that modified Zhenwutang could reduce the expression levels of HIF-1α and α-SMA in the renal tissues of CRF rats, increase the expression levels of PHD1 and PHD2, alleviate renal tissue hypoxia injury, reduce myofibroblast formation, and slow down the progression of CRF in rats. ConclusionModified Zhenwutang may improve renal tissue hypoxia, inhibit cell transdifferentiation, cell apoptosis/necroptosis, and inflammation by affecting the expression of target proteins such as ALB, Akt1, TNF, IL-6, INS, VEGFA, TP53, and IL-1β, as well as regulating the HIF-1 signaling pathway, thus delaying the progression of CRF.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 114-122, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978457

RESUMO

ObjectiveTo observe the modulatory effect of modified Zhenwutang on the interleukin-6 (IL-6), matrix metallopeptidase-9(MMP-9), type Ⅳ collagen(COL-Ⅳ) in rats with chronic renal failure (CRF) and to investigate the potential mechanism of its treatment of CRF. MethodFifty male SD rats were randomly divided into a modeling group of 40 rats and a normal group of 10 rats, and the modeling group was prepared by continuous adenine gavage for 12 weeks. After successful modelling, the modelling group was divided into the model group, the low dose (7.2 g·kg-1·d-1) group, the medium dose (14.4 g·kg-1·d-1) group, the high dose (28.8 g·kg-1·d-1) group and the Benadryl hydrochloride (10 mg·kg-1·d-1) group for gavage according to the random number table method, In the normal group and the model group, equal volume of distilled water was administered by gavage for 4 weeks. After the administration, the levels of blood creatinine (SCr), blood urea nitrogen (BUN) and 24 h urine protein (24 h-UTP) were measured, the levels of serum IL-6 were measured by enzyme linked immunosorbent assay(ELISA). Immunohistochemistry (IHC) was used to detect intercellular cell adhesion molecule-1 (ICAM-1), IL-6, MMP-9, and other molecules in the rat kidney. The expression of ICAM-1 mRNA, IL-6 mRNA, MMP-9 mRNA and COL-Ⅳ mRNA in rat kidney tissues was measured by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression levels of ICAM-1, IL-6, MMP-9 and COL-Ⅳ in rat kidney tissues were measured by Western blot. ResultCompared with the normal group, the levels of SCr, BUN and 24 h-UTP were significantly increased in the model group (P<0.01); the serum IL-6 level was significantly increased (P<0.01), the tubular lumen was dilated with atrophy, the tubular epithelial cells were necrotic, swollen and vacuolated, the interstitium was infiltrated by a large number of inflammatory cells and collagen fibers were deposited, the levels of IL-6, ICAM-1 and COL-Ⅳ were strongly positive in the tubular interstitium of the model group (P<0.01), The levels of ICAM-1 mRNA, IL-6 mRNA and COL-Ⅳ mRNA were significantly increased (P<0.01) and MMP-9 mRNA was significantly decreased (P<0.05) in the model rats. ICAM-1, IL-6 and COL-Ⅳ protein expression was significantly increased (P<0.01) and MMP-9 protein expression was significantly increased (P<0.01) in the renal tissue, and MMP-9 protein expression was significantly decreased (P<0.01). Compared with the model group, the 24 h-UTP, SCr and BUN levels of rats were significantly reduced after treatment with modified Zhenwutang (P<0.01), the serum IL-6 level was significantly decreased (P<0.01), the renal lesions of rats were significantly improved and collagen fiber deposition was reduced; the expression of IL-6, ICAM-1 and COL-Ⅳ in renal tubules and interstitium was weakened, and MMP-9 in ICAM-1 mRNA, IL-6 mRNA and COL-Ⅳ mRNA levels were significantly reduced (P<0.01) and MMP-9 mRNA levels were significantly increased (P<0.05), ICAM-1, IL-6 and COL-Ⅳ protein expression was significantly reduced (P<0.01) and MMP-9 protein expression was significantly The expression of ICAM-1, IL-6 and COL-Ⅳ proteins was significantly decreased (P<0.01) and MMP-9 protein expression was significantly increased (P<0.01). ConclusionModified Zhenwutang may regulate the IL-6/MMP-9/COL-Ⅳ signaling pathway, thereby reducing proteinuria, improving renal function, reducing renal pathological damage and delaying the progression of CRF interstitial fibrosis.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 100-113, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978456

RESUMO

ObjectiveBy observing the effect of modified Zhenwutang on the expression of superoxide dismutase 1(SOD1), malondialdehyde(MDA), advanced oxidation protein product(AOPP), nuclear factor kappa-B(NF-κB) p65,p-p65,IL-1β, TNF-α in serum and renal tissue of adenine-induced chronic renal failure rats and the pathology of heart and kidney tissue, the possible mechanism of modified Zhenwutang delaying the progression of chronic renal failure complicated with heart disease was discussed. MethodFifty SPF male SD rats were divided into normal group 10 and model group 40 according to the random number table method. After one week of adaptive feeding, the experimental chronic renal failure complicated with cardiovascular disease rat model was established by intragastric administration of adenine 150 mg·kg-1·d-1. After the model was completed, 3 rats in the normal group and the model group were randomly selected to detect whether the model was successful. After successful modeling, the rats in the model group were divided into model group , modified Zhenwutang low-dose group , modified Zhenwutang medium-dose group, modified Zhenwutang high-dose group and Benazepril hydrochloride group according to the random number table method, with 6 rats in each group. Drugs were administered once a day for 4 weeks. At the end of the 17th week of the experiment, 24-hour urinary total protein(24 h-UTP) and urine creatinine(UCr)were detected. At the end of the 17th week, the rats in each group were anesthetized and the abdominal aorta was taken. After centrifugation, the supernatant was taken to detect triglyceride(TG), total cholesterol(TC), serum calcium(Ca), serum potassium, serum phosphate, serum creatinine(Scr), blood urea nitrogen(BUN); the expression levels of serum AOPP, IL-1β and TNF-α were detected by enzyme linked immunosorbent assay(ELISA). The pathological changes of heart and kidney tissues were observed by hematoxylin-eosin(HE)/Masson method. The ultrastructural changes of proximal renal tubules were observed by transmission electron microscopy . The kidney tissue expressions of SOD1, MDA, AOPP, NF-κB p65,p-p65,IL-1β and TNF-α were observed by immunohistochemistry. The kidney tissue expression levels of SOD1, NF-κB p65, IL-1β and TNF-α mRNA were observed by real-time polymerase chain reaction(Real-time PCR). The kidney tissue expression levels of SOD1, MDA, NF-κB p65 and p-p65 were detected by Western blot. Result①Compared with the normal group, the experimental rats in the model group showed an increase in 24-hour UTP (P<0.01)and a decrease in UCr(P<0.01). The experimental rats in the model group showed an increase in Cr, BUN, TG, TC, serum phosphate, and serum potassium(P<0.01).The levels of AOPP, IL-1β and TNF-α in serum of rats in the model group were significantly increased(P<0.01). In the model group, the glomerular balloon space was significantly widened, the renal interstitium was significantly widened with a large number of inflammatory cell infiltration, a large number of renal tubular lumens were blocked by brown deposits, and there were a large number of collagen fiber deposition in the renal interstitium. The collagen fibers around the renal vessels, outside the capsule wall of the renal capsule wall, glomerular basement membrane and renal tubular basement membrane were significantly increased, and the cardiac muscle fibers were significantly thickened. There was a small amount of inflammatory cell infiltration around the blood vessels, and a large number of collagen fibers around the cardiac vessels and between the myocardial cells. In the model group, high-density diamond-shaped needle-like crystals were observed in the proximal renal tubular epithelial cells of rats, with increased lysosomes, mitochondrial proliferation, mitochondrial cristae and dense mitochondrial outer membrane. The left ventricular diastolic wall thickness and systolic wall thickness of the experimental rats in the model group was increased in proximal renal tubular epithelial cells and their nuclei.In the model group, the expression of MDA, AOPP, NF-κB p65,p-p65 IL-1β and TNF-α in proximal renal tubular epithelial cells was significantly increased(P<0.01), the expression of p-p65 in the nucleus of proximal renal tubular epithelial cells was significantly increased(P<0.01), and the expression of SOD1 in proximal renal tubular epithelial cells was significantly decreased(P<0.01). The kidney tissue expression of NF-κB p65, IL-1β and TNF-α mRNA in the model group was increased(P<0.01), and the expression of SOD1 mRNA was decreased(P<0.01). The kidney tissue expression of SOD1 protein in the model group was significantly decreased(P<0.01). The kidney tissue expression of MDA, NF-κB p65 and p-p65 protein was increased (P<0.01). ② Compared with the model group, after the intervention of modified Zhenwutang, 24 h-UTP was decreased (P<0.01)and UCr was increased(P<0.01). Cr, BUN, TG, TC, serum phosphate, serum potassium was decreased (P<0.01). Serum AOPP, IL-1β and TNF-α levels were decreased(P<0.01). Cardiac and Renal pathological damage was reduced; mitochondrial damage in proximal renal tubules was reduced; the expression of MDA, AOPP, NF-κB p65, IL-1β, TNF-α in proximal renal tubular epithelial cells was decreased (P<0.01), the expression of p-p65 in the nucleus of proximal renal tubular epithelial cells was significantly decreased (P<0.01), and the expression of SOD1 in proximal renal tubular epithelial cells was significantly increased (P<0.01). The kidney tissue expression of NF-κB p65, IL-1β, TNF-α mRNA was decreased (P<0.01), and the expression of SOD1 mRNA was increased(P<0.01). The kidney tissue expression of SOD1 protein was significantly increased (P<0.01), and the expression of MDA, NF-κB p65 and p-p65 protein was decreased (P<0.01). The Chinese medicine group showed a significant dose-effect trend. ConclusionModified Zhenwutang may reduce the production of oxidative stress and mitochondrial damage in proximal renal tubular epithelial cells, thereby reducing oxidative stress products and inhibiting the release of inflammatory factors caused by the activation of NF-κB signaling pathway, reducing the damage to heart and kidney tissues and functions, and delaying the progression of chronic renal failure complicated with heart disease, and the traditional Chinese medicine group has a dose-effect trend.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 89-99, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978455

RESUMO

ObjectiveTo explore the underlying mechanism of modified Zhenwutang in delaying renal interstitial fibrosis in chronic renal failure (CRF) by observing the effects of modified Zhenwutang on the expression of angiotensin Ⅱ (Ang Ⅱ), angiotensin Ⅱ type 1 receptor (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), transforming growth factor-β1 (TGF-β1), type I collagen (COL1A1), and type Ⅲ collagen (COL3A1) in the serum and renal tissues of adenine-induced CRF rats. MethodFifty male SPF-grade SD rats were randomly divided into a normal group (n=10) and an experimental group (n=40) using a random number table. After one week of adaptive feeding, the experimental CRF model was established in rats by administering adenine at 150 mg·kg-1·d-1 orally. Three rats from each group were randomly selected to evaluate the model induction. After successful modeling, rats in the experimental group were randomly divided into a model group, low-, medium, and high-dose modified Zhenwutang groups, and a benazepril hydrochloride group, with six rats in each group. The rats were orally administered the corresponding drugs once daily for four weeks. At the end of the first week, 13th week, and 17th week of the experiment, 24 hour urinary protein quantification (24 h-UTP) was measured. At the end of the 17th week, the rats were euthanized, and blood samples were collected from the abdominal aorta for the measurement of total protein (TP), albumin (ALB), creatinine (Cr), and blood urea nitrogen (BUN) in the serum. Enzyme-linked immunosorbent assay (ELISA) was used to measure the expression levels of serum Ang Ⅱ. Hematoxylin-eosin (HE) staining and Masson's trichrome staining were performed to observe the pathological changes in renal tissues. Immunohistochemistry (IHC) was performed to observe the expression of AT1R, NOX4, TGF-β1, COL1A1, and COL3A1. Real-time fluorescence-based quantitative polymerase chain reaction (Real-time PCR) was used to observe the mRNA expression levels of AT1R, NOX4, and TGF-β1. Western blot was conducted to measure the protein expression levels of AT1R, NOX4, and TGF-β1. Result① Compared with the normal group, the model group showed a significant increase in 24 h-UTP (P<0.01). The levels of Cr and BUN in the model group were significantly higher (P<0.01), while the levels of TP and ALB were significantly lower (P<0.01). The serum Ang Ⅱ level in the model group was significantly elevated (P<0.01). The model group exhibited widening of the renal glomerular mesangial space, necrotic glomeruli, increased interstitial width with extensive inflammatory cell infiltration, brownish precipitates blocking the renal tubular lumens, irregular renal tubules, and significant deposition of collagen fibers in the renal interstitium. Additionally, the collagen fibers around the renal vessels, outside the parietal layer of the renal sacs, glomerular basement membrane, and tubular basement membrane increased significantly. The expression of AT1R and NOX4 in the glomeruli and renal tubules of the model group was significantly enhanced, and TGF-β1 expression also significantly increased in the renal tubules. The expression of COL1A1 and COL3A1 in the renal interstitium significantly increased. The mRNA expression of AT1R and TGF-β1 in the model group significantly increased (P<0.01), while NOX4 mRNA expression significantly decreased (P<0.01). The protein expression of AT1R, NOX4, and TGF-β1 was significantly enhanced (P<0.01). ② Compared with the model group, modified Zhenwutang significantly reduced 24h-UTP (P<0.01), decreased levels of Cr and BUN (P<0.01), increased levels of TP and ALB (P<0.01), reduced serum Ang Ⅱ level (P<0.01), alleviated renal pathological damage, reduced expression of AT1R, NOX4, TGF-β1, COL1A1, and COL3A1 in the glomeruli, renal tubules, and renal interstitium, reduced mRNA expression of AT1R and TGF-β1 (P<0.01), increased NOX4 mRNA expression (P<0.01), and weakened protein expression of AT1R, NOX4, and TGF-β1 (P<0.01). The modified Zhenwutang groups showed a significant dose-effect trend. ConclusionModified Zhenwutang may delay renal interstitial fibrosis in CRF rats by reducing the expression of Ang Ⅱ, AT1R, NOX4, and TGF-β1 in the serum and renal tissues, thereby alleviating renal pathological damage, reducing proteinuria, protecting renal function, and delaying the progression of CRF. The modified Zhenwutang group exhibited a dose-effect trend.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 98-103, 2019.
Artigo em Chinês | WPRIM | ID: wpr-801769

RESUMO

Objective: To study the clinical efficacy of modified Zhenwutang combined with Zhengji technique on cold-dampness arthralgia syndrome caused by knee osteoarthritis (KOA) at episode and the effect on inflammatory factors of joint fluid. Method: One hundred and forty-eight patients were randomly divided into control group and observation group by random number table. Patients in control group got celecoxib capsules, 0.2 g/time, 1 time/day, and Zhengji technique with lumbar positioning oblique pulling and finger pressing for 12 times, 1 time for every two days, 3 times/week. Patients in observation group got modified Zhenwutang, 1 dose/day, and the same Zhengji technique. The course of treatment was 4 weeks. Before and after treatment, western Ontario and McMaster University Osteoarthritis index (WOMAC), pain and swelling, index of severity of osteoarthritis (ISOA), local signs of knee joint and cold-dampness obstruction syndrome were scored, and the score of quality of life were discussed by arthritis impact measurement scale 2 (AIMS2-SF). And levels of interleukin-1 beta (IL-1β), IL-17, tumor necrosis factor-alpha (TNF-α), substance P (SP) and calcitonin gene-related peptide (CGRP) were detected. Result: The clinical efficacy in observation group was better than that in control group (Z=2.131, PPPβ, IL-17, TNF-α, SP and CGRP were higher than those in control group (PConclusion: Modified Zhenwutang combined with Zhengji technique can relieve clinical symptoms of patients with cold-dampness arthralgia syndrome caused by knee osteoarthritis (KOA) at episode, ameliorate joint function to improve patients' quality of life, reduce the expression of proinflammatory factors and neuropeptides in synovial fluid, so as to inhibit the inflammatory response and controlling clinical symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA