Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 87-94, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1011446

RESUMO

ObjectiveTo explore whether the mechanism of Shuangshen Ningxin capsules (SSNX) in alleviating myocardial ischemia-reperfusion injury (MIRI) in rats is related to the regulation of mitochondrial fission and fusion. MethodThis study focused on Sprague Dawley (SD) rats and ligated the left anterior descending branch of the coronary artery to construct a rat model of MIRI. The rats were divided into the sham operation group, model group, SSNX group (90 mg·kg-1) and trimetazidine group (5.4 mg·kg-1). The activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were detected by micro method. Changes in mitochondrial membrane potential (△Ψm) and the degree of mitochondrial permeability transition pore (mPTP) opening were detected by the chemical fluorescence method. The intracellular adenosine triphosphate (ATP) level was detected by the luciferase assay. The messenger ribonucleic acid (mRNA) and protein expression levels of mitochondrial fission and fusion related factors dynamin-related protein 1 (DRP1), mitochondrial fission 1 protein (FIS1), optic atrophy protein 1 (OPA1), mitochondrial outer membrane fusion protein 1 (MFN1), and MFN2 were detected by real-time polymerase chain reaction (real-time PCR) and Western blot. ResultCompared with the sham operation group, the model group showed a decrease in serum SOD activity and an increase in MDA content. The opening level of mPTP, the level of △Ψm and ATP content decreased, the protein expressions of mitochondrial fission factors DRP1 and FIS1 increased, and the protein expressions and mRNA transcription levels of fusion related factors OPA1 and MFN1 decreased. Compared with the model group,SSNX significantly increased serum SOD activity, reduced MDA content, increased intracellular ATP level and △Ψm, reduced the opening level of mPTP, downregulated the protein expressions of mitochondrial fission factors DRP1 and FIS1, and increased the mRNA transcription levels and protein expressions of fusion related factors OPA1 and MFN1. ConclusionSSNX inhibits the expressions of mitochondrial fission factors DRP1 and FIS1, and increases the expressions of fusion related factors OPA1 and MFN1, inhibiting mitochondrial fission and increasing mitochondrial fusion, thereby alleviating MIRI.

2.
China Pharmacy ; (12): 124-128, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005226

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a serious complication of revascularization in patients with myocardial infarction. The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway plays an important role in the pathological process of MIRI. Currently,research has found that traditional Chinese medicine has a good effect on myocardial injury caused by ischemia-reperfusion. Based on the Nrf2/HO-1 signaling pathway,this article summarizes the action mechanism of traditional Chinese medicine formulas and monomers in intervening with MIRI. It is found that traditional Chinese medicine formulas (Yixin formula,Wenyang tongmai formula,Dingxin formula Ⅰ),monomers such as terpenoids (ginkgolides, astragaloside Ⅳ,ginsenosides),phenols (brazilin,hematoxylin A,resveratrol) and quinones (aloe,emodin) can alleviate MIRI by activating the Nrf2/HO-1 signaling pathway,inhibiting oxidative stress and inflammatory reactions,etc.

3.
Braz. J. Pharm. Sci. (Online) ; 59: e23002, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1520312

RESUMO

Abstract This study aimed to investigate the role and signaling pathways of β3-AR in myocardial ischemia/reperfusion (I/R) injury, which is one of the leading causes of death worldwide. 47 male rats were randomly divided into two main groups to evaluate infarct size and molecular parameters. Rats in both groups were randomly divided into 4 groups. Control (sham), I/R (30 min ischemia/120 min reperfusion), BRL37344 (BRL) (A) (5 µg/kg single-dose pre-treatment (preT) before I/R) and BRL (B) (5 µg/kg/day preT for 10 days before I/R). Infarct size was determined with triphenyltetrazolium chloride staining and analyzed with ImageJ program. The levels of AMPK, SIRT1, mTOR, and p70SK6 responsible for cellular energy and autophagy were evaluated by western blot. Infarct size increased in the I/R group (44.84 ± 1.47%) and reduced in the single-dose and 10-day BRL-treated groups (32.22 ± 1.57%, 29.65 ± 0.55%; respectively). AMPK and SIRT1 levels were decreased by I/R but improved in the treatment groups. While mTOR and p70S6K levels increased in the I/R group, they decreased with BRL preT. BRL preT protects the heart against I/R injury. These beneficial effects are mediated in part by activation of AMPK and SIRT1, inhibition of mTOR and p70S6K, and consequently protected autophagy.

4.
Acta Pharmaceutica Sinica ; (12): 2685-2693, 2023.
Artigo em Chinês | WPRIM | ID: wpr-999012

RESUMO

Total flavonoids of Dracocephalum moldavica L. (TFDM) is an effective component extracted and isolated from the traditional Uighur medicinal herb Cymbidium fragrans. Cymbidium fragrans has the effects of tonifying the heart and brain, promoting blood circulation and resolving blood stasis, and has been widely used in the treatment of cardiovascular and cerebrovascular diseases for a long time. The purpose of this study was to determine the effect of total flavonoids from Cymbidium fragrans on hypoxia/re-oxygenation (H/R) injury in H9c2 (rat cardiomyocytes) cells and its mechanism. A model (H/R) of hypoxia/re-oxygenation injury in H9c2 cells was established using hypoxia and glucose deprivation for 9 h combined with re-oxygenation and rehydration for 2 h to simulate myocardial ischemia-reperfusion injury. The effects of total flavonoids from Cymbidium fragrans on cell viability, markers of myocardial cell damage, oxidative stress levels, and reactive oxygen radical (ROS) content were investigated, Western blot was used to detect the expression of vascular endothelial growth factor B (VEGF-B) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway related proteins. The results showed that the total flavonoids of Cymbidium fragrans significantly increased the viability of myocardial cells after H/R injury, and decreased the content of lactate dehydrogenase (LDH) and creatine kinase isozyme (CK-MB) in the cell supernatant. It significantly reduced malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and decreased intracellular ROS and nitric oxide (NO) content. Western blot analysis showed that the total flavonoids of Cymbidium fragrans decreased Bax levels in H9c2 cells damaged by H/R and increased Bcl-2 expression. Total flavones of Cymbidium fragrans upregulate VEGF-B/AMPK pathway related proteins VEGF-B, vascular endothelial growth factor receptor 1 (VEGFR-1), neuropilin 1 (NRP-1), peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α), phosphorylated adenosine monophosphate activated protein (p-AMPK) and phospho mechanistic target of rapamycin (p-MTOR) levels. The above research results indicate that the total flavonoids of Cymbidium can significantly reduce the H/R injury of myocardial cells, which may be related to the upregulation of VEGF-B/AMPK pathway and inhibition of oxidative stress response.

5.
Journal of Traditional Chinese Medicine ; (12): 1862-1865, 2023.
Artigo em Chinês | WPRIM | ID: wpr-987270

RESUMO

Coronary microcirculation disorder after myocardial ischemia reperfusion (MIR) is a prominent problem in the treatment of coronary heart disease. According to the physiological commonality between “collaterals-sweat pore qi and fluid” and coronary microcirculation, and the evolution of the course of MIR, it is believed that “heart collateral stasis obstruction, sweat pore constraint and block” is the cause of coronary microcirculation disorder. The evolution of the pathogenesis can be divided into three periods. During the myocardial ischemia period, the pathogenesis is heart collaterals obstruction and sweat pores empty, while during the ischemia reperfusion period, it is internal formulation of deficiency wind, spasms of collaterals or slight heart collaterals obstruction; in the coronary microcirculation disorder period, sweat pores constraint and block, constraint transforming into heat, qi and fluid failing to diffuse are the pathogenesis. The corresponding treatment principle is assisting dredge with supplementation, and supplementing deficiency to dispel stasis; treating wind and blood simultaneously, and extinguishing wind to arrest convulsion; clearing heat and cooling blood, and diffusing qi and unblocking qi and fluid. Moreover, it is recommended to treat the heart and lungs simultaneously, and regulate the heart and liver at the same time.

6.
Chinese journal of integrative medicine ; (12): 1066-1076, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1010314

RESUMO

OBJECTIVE@#To explore the protective effect of Huoxin Pill (HXP) on acute myocardial ischemia-reperfusion (MIRI) injury in rats.@*METHODS@#Seventy-five adult SD rats were divided into the sham-operated group, model group, positive drug group (diltiazem hydrochloride, DH), high dose group (24 mg/kg, HXP-H) and low dose group (12 mg/kg, HXP-L) of Huoxin Pill (n=15 for every group) according to the complete randomization method. After 1 week of intragastric administration, the left anterior descending coronary artery of the rat's heart was ligated for 45 min and reperfused for 3 h. Serum was separated and the levels of creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), hypersensitive C-reactive protein (hs-CRP) and interleukin-1β (IL-1β) were measured. Myocardial ischemia rate, myocardial infarction rate and myocardial no-reflow rate were determined by staining with Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC). Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN) databases were used to screen for possible active compounds of HXP and their potential therapeutic targets; the results of anti-inflammatory genes associated with MIRI were obtained from GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Datebase (TTD) databases was performed; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the intersected targets; molecular docking was performed using AutoDock Tools. Western blot was used to detect the protein expression of Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NFκB)/NOD-like receptor protein 3 (NLRP3).@*RESULTS@#Compared with the model group, all doses of HXP significantly reduced the levels of LDH, CK and CK-MB (P<0.05, P<0.01); HXP significantly increased serum activity of SOD (P<0.05, P<0.01); all doses of HXP significantly reduced the levels of hs-CRP and IL-1β (P<0.05, P<0.01) and the myocardial infarction rate and myocardial no-reflow rate (P<0.01). GO enrichment analysis mainly involved positive regulation of gene expression, extracellular space and identical protein binding, KEGG pathway enrichment mainly involved PI3K-Akt signaling pathway and lipid and atherosclerosis. Molecular docking results showed that kaempferol and luteolin had a better affinity with TLR4, NFκB and NLRP3 molecules. The protein expressions of TLR4, NFκB and NLRP3 were reduced in the HXP group (P<0.01).@*CONCLUSIONS@#HXP has a significant protective effect on myocardial ischemia-reperfusion injury in rats, and its effect may be related to the inhibition of redox response and reduction of the inflammatory response by inhibiting the TLR4NFκB/NLRP3 signaling pathway.


Assuntos
Humanos , Ratos , Animais , NF-kappa B/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Proteína C-Reativa , Receptor 4 Toll-Like , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Creatina Quinase , L-Lactato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo
7.
China Journal of Chinese Materia Medica ; (24): 879-889, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970559

RESUMO

Acute myocardial infarction seriously endangers the health of people due to its high morbidity and high mortality. Reperfusion strategy is the preferred treatment strategy for acute myocardial infarction. However, reperfusion may lead to additional heart damage, namely myocardial ischemia reperfusion injury(MIRI). Therefore, how to reduce myocardial ischemia reperfusion injury has become one of the urgent problems to be solved in cardiovascular disease. Traditional Chinese medicine(TCM) has the multi-component, multi-channel, and multi-target advantages in the treatment of MIRI, which offers new ideas in this aspect. TCM containing flavonoids has a variety of biological activities and plays a significant role in the treatment of MIRI, which has great research and development application value. TCM containing flavonoids can regulate multiple signaling pathways of MIRI, such as phosphatidylinositol 3 kinase/kinase B(PI3K/Akt) signaling pathway, Janus kinase/signal transducer and activator of transcriptions(JAK/STAT) signaling pathway, adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway, nuclear factor-erythroid 2-related factor 2/antioxidant response element(Nrf2/ARE) signaling pathway, nuclear factor kappa-B(NF-κB) signaling pathway, silent information regulator 1(Sirt1) signaling pathway, and Notch signaling pathway. It reduces MIRI by inhibiting calcium overload, improving energy metabolism, regulating autophagy, and inhibiting ferroptosis and apoptosis. Therefore, a review has been made based on the regulation of relative signaling pathways against MIRI by TCM containing flavonoids, thus providing theoretical support and potential therapeutic strategies for TCM to alleviate MIRI.


Assuntos
Humanos , Traumatismo por Reperfusão Miocárdica , Fosfatidilinositol 3-Quinases , Transdução de Sinais , NF-kappa B , Proteínas Quinases Ativadas por AMP , Flavonoides
8.
China Journal of Chinese Materia Medica ; (24): 725-735, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970542

RESUMO

This study aimed to parallelly investigate the cardioprotective activity of Cinnamomi Ramulus formula granules(CRFG) and Cinnamomi Cortex formula granules(CCFG) against acute myocardial ischemia/reperfusion injury(MI/RI) and the underlying mechanism based on the efficacy of "warming and coordinating the heart Yang". Ninety male SD rats were randomly divided into a sham group, a model group, CRFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, and CCFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, with 15 rats in each group. The sham group and the model group were given equal volumes of normal saline by gavage. Before modeling, the drug was given by gavage once a day for 7 consecutive days. One hour after the last administration, the MI/RI rat model was established by ligating the left anterior descending artery(LAD) for 30 min ischemia followed by 2 h reperfusion except the sham group. The sham group underwent the same procedures without LAD ligation. Heart function, cardiac infarct size, cardiac patho-logy, cardiomyocyte apoptosis, cardiac injury enzymes, and inflammatory cytokines were determined to assess the protective effects of CRFG and CCFG against MI/RI. The gene expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain protein 3(NLRP3) inflammasome, apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate specific proteinase-1(caspase-1), Gasdermin-D(GSDMD), interleukin-1β(IL-1β), and interleukin-18(IL-18) were determined by real-time quantitative polymerase chain reaction(RT-PCR). The protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD were determined by Western blot. The results showed that both CRFG and CCFG pretreatments significantly improved cardiac function, decreased the cardiac infarct size, inhibited cardiomyocyte apoptosis, and reduced the content of lactic dehydrogenase(LDH), creatine kinase MB isoenzyme(CK-MB), aspartate transaminase(AST), and cardiac troponin Ⅰ(cTnⅠ). In addition, CRFG and CCFG pretreatments significantly decreased the levels of IL-1β, IL-6, and tumor necrosis factor-α(TNF-α) in serum. RT-PCR results showed that CRFG and CCFG pretreatment down-regulated the mRNA expression levels of NLRP3, caspase-1, ASC, and downstream pyroptosis-related effector substances including GSDMD, IL-18, and IL-1β in cardiac tissues. Western blot revealed that CRFG and CCFG pretreatments significantly decreased the protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD in cardiac tissues. In conclusion, CRFG and CCFG pretreatments have obvious cardioprotective effects on MI/RI in rats, and the under-lying mechanism may be related to the inhibition of NLRP3/caspase-1/GSDMD signaling pathway to reduce the cardiac inflammatory response.


Assuntos
Masculino , Animais , Ratos , Ratos Sprague-Dawley , Interleucina-18 , Traumatismo por Reperfusão Miocárdica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Necrose Tumoral alfa , Infarto do Miocárdio , Caspase 1
9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 213-221, 2023.
Artigo em Chinês | WPRIM | ID: wpr-973764

RESUMO

Due to its high incidence and mortality rate, acute myocardial infarction poses a serious threat to public health. Reperfusion therapy is the preferred treatment strategy for acute myocardial infarction, which can quickly restore blood circulation to the ischemic myocardium, rescue dying myocardial cells, reduce infarct size, and lower the mortality rate. However, reperfusion may lead to additional heart damage, known as myocardial ischemia-reperfusion injury (MIRI). Therefore, how to alleviate MIRI has become one of the urgent issues in cardiovascular therapy. Traditional Chinese medicine (TCM) has the advantage of multiple components, multiple pathways, and multiple targets in the treatment of MIRI, providing new ideas for reducing MIRI. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is closely related to MIRI, and it plays an important role in alleviating MIRI by regulating inflammation, oxidative stress, autophagy, apoptosis, and ferroptosis. This article reviewed the basic structure of the AMPK signaling pathway and its role in MIRI, as well as the research progress of TCM in the treatment of MIRI by regulating the AMPK pathway, aiming to provide a theoretical basis for the prevention and treatment of MIRI.

10.
China Pharmacy ; (12): 1193-1198, 2023.
Artigo em Chinês | WPRIM | ID: wpr-973618

RESUMO

OBJECTIVE To investigate the effects of astilbin (AST) on myocardial ischemia-reperfusion injury (MIRI) in rats and its potential mechanism. METHODS SD male rats were randomly divided into sham operation group, model group, positive control group (Compound Salvia miltiorrhiza tablets, 240 mg/kg), AST low-dose and high-dose groups (30, 90 mg/kg), and high- dose of AST+hypoxia-inducible factor-1α(HIF-1α) inhibitor group (AST 90 mg/kg+2ME2 15 mg/kg), with 25 rats in each group. Except for sham operation group, MIRI model was induced in other groups, and then given relevant drug or normal saline intragastrically or intraperitoneally, for consecutive 28 d. Serum contents of cardiac troponin I (cTnI) and creatine kinase isoenzyme (CK-MB) were detected; volume ratio of myocardial infarction was measured; the pathological changes of myocardium, the apoptotic rate of myocardial cells and ultrastructure of mitochondria in myocardial tissue were all observed. The contents of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and malondialdehyde (MDA), the activity of superoxide dismutase (SOD), the expressions of HIF-1α, adenovirus E1B interacting protein 3 (BNIP3) and myosin-like Bcl-2 interacting protein (Beclin1) were determined in myocardium. The ratio of microtubule-associated protein light chain 3 (LC3) Ⅱ to Ⅰ (LC3 Ⅱ/Ⅰ) in rat myocardium was calculated. RESULTS Compared with model group, no obvious swelling was found in the myocardial tissue of rats in positive control group, AST low-dose and high-dose groups, and the myocardial fibers were arranged regularly; the volume ratio of myocardial infarction, the contents of cTnI, CK-MB, TNF-α, IL-6 and MDA, the apoptotic rate were decreased significantly (P<0.05), while SOD activity, protein expressions of HIF-1α, BNIP3 and Beclin1, LC3Ⅱ/Ⅰ were increased significantly (P<0.05). HIF-1α inhibitor could significantly weaken the improvement effect of AST on the above indicators in MIRI model rats (P<0.05). CONCLUSIONS AST enhances mitochondrial autophagy by activating HIF-1α/BNIP3 signaling pathway, thereby reducing MIRI in rats.

11.
Chinese journal of integrative medicine ; (12): 81-88, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971316

RESUMO

Mitophagy is one of the important targets for the prevention and treatment of myocardial ischemia/reperfusion injury (MIRI). Moderate mitophagy can remove damaged mitochondria, inhibit excessive reactive oxygen species accumulation, and protect mitochondria from damage. However, excessive enhancement of mitophagy greatly reduces adenosine triphosphate production and energy supply for cell survival, and aggravates cell death. How dysfunctional mitochondria are selectively recognized and engulfed is related to the interaction of adaptors on the mitochondrial membrane, which mainly include phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced kinase 1/Parkin, hypoxia-inducible factor-1 α/Bcl-2 and adenovirus e1b19k Da interacting protein 3, FUN-14 domain containing protein 1 receptor-mediated mitophagy pathway and so on. In this review, the authors briefly summarize the main pathways currently studied on mitophagy and the relationship between mitophagy and MIRI, and incorporate and analyze research data on prevention and treatment of MIRI with Chinese medicine, thereby provide relevant theoretical basis and treatment ideas for clinical prevention of MIRI.


Assuntos
Humanos , Mitocôndrias/metabolismo , Mitofagia/genética , Traumatismo por Reperfusão Miocárdica , Proteínas Quinases/metabolismo
12.
Chinese Acupuncture & Moxibustion ; (12): 669-678, 2023.
Artigo em Chinês | WPRIM | ID: wpr-980777

RESUMO

OBJECTIVE@#To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI.@*METHODS@#A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 μL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR.@*RESULTS@#Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01).@*CONCLUSION@#EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Assuntos
Masculino , Animais , Ratos , Ratos Sprague-Dawley , Núcleos Cerebelares , Eletroacupuntura , Traumatismo por Reperfusão Miocárdica/terapia , Receptores de GABA-A/genética , RNA Mensageiro
13.
China Journal of Chinese Materia Medica ; (24): 6434-6441, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008843

RESUMO

This study aimed to investigate the effect and underlying mechanism of Poria cocos polysaccharides(PCP) on myocardial cell apoptosis in the rat model of myocardial ischemia-reperfusion injury(MI/RI). Male SPF-grade SD rats were randomly divided into a sham group(saline), a model group(saline), low-and high-dose PCP groups(100 and 200 mg·kg~(-1)), and a fasudil group(10 mg·kg~(-1)), with 16 rats in each group. Except for the sham group, the other four groups underwent left anterior descending coronary artery ligation for 30 min followed by reperfusion for 2 h to establish the MI/RI model. The myocardial infarct area was assessed by TTC staining. Histological changes were observed through HE staining. Myocardial cell apoptosis was evaluated using TUNEL staining. Serum lactate dehydrogenase(LDH), creatine kinase MB(CK-MB), interleukin-1β(IL-1β) and IL-18 levels, myocardial superoxide dismutase(SOD) activity and malondialdehyde(MDA) levels were detected by ELISA. Protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), cleaved caspase-3, Ras homolog gene A(RhoA), myosin phosphatase target subunit 1(MYPT-1), phosphorylated MYPT-1(p-MYPT-1), and Rho-associated coiled-coil forming kinase 1(ROCK 1) were measured by Western blot. Pathological staining of myocardial tissue revealed that in the model group, there was focal necrosis of myocardial tissue, myocardial cell swelling, unclear boundaries, and neutrophil infiltration. These pathological changes were alleviated in the low-and high-dose PCP groups and the fasudil group. Compared with the model group, the low-and high-dose PCP groups and the fasudil group showed significantly reduced myocardial infarct area and myocardial cell apoptosis rate. Compared with the sham group, the model group exhibited elevated serum LDH, CK-MB, IL-1β and IL-18 levels, increased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and decreased myocardial SOD levels and Bcl-2 protein expression. Compared with the model group, the PCP groups and the fasudil group showed lowered serum LDH, CK-MB, IL-1β and IL-18 levels, decreased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and increased myocardial SOD levels and Bcl-2 protein expression. PCP exhibited a certain preventive effect on myocardial tissue pathological damage and myocardial cell apoptosis in MI/RI rats, possibly related to the inhibition of the Rho-ROCK signaling pathway activation, thereby reducing oxidative stress and inflammatory responses.


Assuntos
Ratos , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína X Associada a bcl-2/metabolismo , Ratos Sprague-Dawley , Caspase 3/metabolismo , Interleucina-18 , Wolfiporia , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Creatina Quinase Forma MB , Apoptose , Polissacarídeos/farmacologia , Superóxido Dismutase/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados
14.
Chinese Pharmacological Bulletin ; (12): 238-243, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013849

RESUMO

Aim To investigate the role of transient receptor potential ankyrin 1 receptor in remote preconditioning of trauma-induced cardioprotection against myocardial ischemia-reperfusion injury and related mechanism. Methods SD rats were randomly divided into five groups: Sham operation group(Sham), model group(IR), remote preconditioning of trauma group(RPCT), TRPA1 inhibitor+remote preconditioning of trauma group(TCS+RPCT)and TRPA1 inhibitor group(TCS). The model of myocardial ischemia/reperfusion in rats was established, and the hemodynamics was monitored throughout the process. After reperfusion, the rat heart was taken to measure the myocardial infarction area and myocardial apoptosis rate, the activity and protein expression of mitochondrial aldehyde dehydrogenase 2(ALDH2)and the expression of 4-hydroxynonenal(4-HNE)were detected. Results Compared with sham group, myocardial infarction area and myocardial apoptosis cell increased. Meanwhile, the activity and expression of ALDH2 decreased and the production of 4-HNE increased in IR group. However, compared with IR group, RPCT group had decreased myocardial infarction area and the rate of cardiomyocyte apoptosis, the activity and expression of ALDH2 increased, the production of 4-HNE decreased. And then, compared with RPCT group, TCS+RPCT group reduced the myocardial protective effect of remote preconditioning of trauma. Conclusions TRPA1 receptor mediates the effect of remote preconditioning of trauma alleviating myocardial ischemia/reperfusion injury in rats. Its mechanism may be related to regulating ALDH2 activity and protein expression, and affecting the content of 4-HNE.

15.
Chinese Pharmacological Bulletin ; (12): 970-978, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013804

RESUMO

Aim To investigate the sites and mechanisms of action of Ginseng-Rhodiola rosea in the treat ment of myocardial ischemia-reperfusion injury ( MI-RI) via using network pharmacology approach, molecu¬lar docking techniques and experimental studies. Methods The active ingredients and targets of Gin¬seng-Rhodiola rosea were screened through the TCMSP database and literature supplementation, and the GEN-EC ARDS ,DISGENET and DRUGBANK databases were searched to obtain the targets of MIRI. Functional pro¬tein interaction networks (PPIs) and the STRING database were used to screen out core targets. The DAVID database was also selected for gene ontology functional analysis ( GO) and KEGG signaling pathway enrich¬ment analysis. Lastly, the preliminary validation was performed with the help of molecular docking techniques and experimental studies. Results Forty-three active ingredients and 348 potential targets of Ginseng-Rhodiola were obtained, and targets such as IL-6 , TNF-α and VEGFA were found to be closely related to MIRI, mainly involving TNF, PDK-Akt, HIF-1 and other signaling pathways.The molecular docking results showed that soysterol, ginsenoside rh2 and rhodioloside had good binding effects and high matching with IL-6, TNF-α,Caspase-3,VEGFA,MAPK1 and other targets, among which the best binding was between Caspase-3 and ginsenoside rh2. The results of the experimental study further showed that Ginseng-Rhodiola rosea could improve myocardial tissue necrosis after myocardial ischemia-reperfusion , reduce myocardial cell edema and vascular congestion, and decrease the expression levels of TNF-α and IL-6 in MIRI rats. Conclusions Ginseng-Rhodiola may modulate multiple targets such as IL-6,TNF-α, Caspase-3, VEGFA and MAPK1 through dousterol, ginsenoside rh2 and rhodiol glycosides to inhibit inflammatory response and oxidative stress, reduce cardiomyocyte damage and exert therapeutic effects on MIRI.

16.
Rev. bras. cir. cardiovasc ; 37(3): 370-379, May-June 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1376533

RESUMO

ABSTRACT Introduction: The objective of this study is to investigate the protective mechanism of dexmedetomidine (Dex) in myocardial ischemia/reperfusion (MIR)-induced acute lung injury (ALI) of diabetic rats by inhibiting hypoxia-inducible factor-1α (HIF-1α). Methods: Initially, healthy male Sprague Dawley rats were treated with streptozocin to induce diabetes. Then, three weeks after the induction, Dex or lentiviral vector (LV)-HIF-1α was injected into the rats 30 minutes prior to the MIR modeling. After four weeks, lung tissues were harvested for pathological changes observation and the wet/dry weight (W/D) ratio determination. Afterwards, oxidative stress indicators and pro-inflammatory factors were measured. In addition, HIF-1α expression was assessed by immunohistochemistry and western blot analysis. Results: Dex could suppress inflammatory cell infiltration, improve lung tissue structure, reduce pathological score and the W/D ratio, and block oxidative stress and inflammatory response in MIR-induced ALI of diabetic rats. Besides, Dex could also inhibit HIF-1α expression. Moreover, Dex + LV-HIF-1α reversed the protective role of Dex on diabetic MIR-induced ALI. Conclusion: Our study has made it clear that Dex inhibited the upregulation of HIF-1α in diabetic MIR-induced ALI, and thus protect lung functions by quenching the accumulation of oxygen radical and reducing lung inflammatory response.

17.
Chinese Journal of Emergency Medicine ; (12): 349-355, 2022.
Artigo em Chinês | WPRIM | ID: wpr-930232

RESUMO

Objective:To explore the regulatory effect of cellular FLICE-like inhibitory protein (cFLIP) on myocardial ischemia-reperfusion injury based on the RIPK1/RIPK3/MLKL-mediated necroptosis pathway.Methods:The cardiomyocyte hypoxia/reoxygenation (H/R) model was constructed by hypoxia for 4 h/reoxygenation for 12 h, and the rat ischemia reperfusion (I/R) model was constructed by ligating the left anterior descending artery for 30 min and reperfusion for 3 h. CCK-8 method was used to detect the viability of cardiomyocytes in each group. DAPI/PI double staining was used to observe changes in necrosis rate of myocardial cell. STRING database was used to predict the protein interaction network of cFLIP. TTC staining was used to detect the area of myocardial infarction in each group of rats, and the protein expression of cFLIPL, cFLIPS, p-RIPK1, p-RIPK3 and p-MLKL were detected by Western blot.Results:In cardiomyocyte H/R injury and myocardial tissue I/R injury, the protein expressions of cFLIPL and cFLIPS were significantly down-regulated, while the levels of p-RIPK1, p-RIPK3 and p-MLKL were increased significantly. Up-regulating the protein expression of cFLIPL and cFLIPS could significantly reduce the damage of cardiomyocytes and the rate of cell necrosis induced by H/R, and decrease the area of myocardial infarction caused by I/R. STRING database results showed that cFLIP had direct protein interactions with RIPK1 and RIPK3. Overexpression of cFLIP in cardiomyocyte and myocardial tissue significantly inhibited H/R or I/R induced the phosphorylation levels of RIPK1, RIPK3 and MLKL.Conclusions:Overexpression of cFLIP can significantly inhibit the RIPK1/RIPK3/MLKL-mediated necroptosis, thereby reducing myocardial cell damage and decreasing the area of myocardial infarction.

18.
Chinese Journal of Emergency Medicine ; (12): 344-348, 2022.
Artigo em Chinês | WPRIM | ID: wpr-930231

RESUMO

Objective:To evaluate the effect of gabapentin on myocardial ischemia-reperfusion injury and its mechanism.Methods:Sixty male clean SD rats, aged 10 weeks and weighing 250 g~300 g, were divided into 5 groups ( n=12) with 12 rats in each group by random number table method: Sham group, myocardial ischemia reperfusion group (group I/R), gabapentin group (group Gap), LY294002 group (group LY) and gabapentin +LY294002 group (group Gap +LY). The model of myocardial ischemia reperfusion injury was established by ligation of the left anterior descending coronary artery for 30 min and reperfusion for 120 min. Heart rate (HR), mean arterial pressure (MAP) and the rate pressure product (RPP) were recorded at baseline before ischemia (T 0) for 30 min (T 1) and reperfusion for 120 min (T 2) to evaluate hemodynamic changes during ischemia and reperfusion; The frequency of PVCs and VT/VF were recorded to evaluate the occurrence of arrhythmias during ischemia/reperfusion. TTC staining was used to detect myocardial infarction area. And the protein expression levels of PI3K and Akt in myocardial tissue were detected by Western blotting. Results:Compared with group I/R, the myocardial infarction area, PVCs and VT/VF times, and the protein expression levels of PI3K and p-Akt were significantly increased in group Gap ( P<0.05). Compared with group Gap, the area of myocardial infarction, the number of PVCs and VT/VF, and the protein expression of PI3K and p-Akt were significantly decreased in the group Gap +LY ( P<0.05). Conclusions:Gabapentin can alleviate myocardial ischemia-reperfusion injury, and its mechanism is related to the activation of PI3K-AKT signaling pathway.

19.
Chinese Journal of Emergency Medicine ; (12): 31-36, 2022.
Artigo em Chinês | WPRIM | ID: wpr-930204

RESUMO

Objective:To investigate the dynamic changes of mitochondrial fission and fusion in the heart of cardiac arrest (CA) rats after return of spontaneous circulation (ROSC), and to explore the role of mitochondrial fission and fusion in the myocardial injury after ROSC.Methods:Healthy male SD rats were randomly random number assigned into the post-resuscitation (PR) 4 h ( n=12), PR 24 h ( n=12), PR 72 h ( n=12), and sham groups ( n=6). The rat CA model was induced by asphyxia, and cardiopulmonary resuscitation (CPR) was performed 6 min after CA. The protein expressions of mitochondrial Drp1, Fis1, Mfn1, and Opa1 were determined by Western blot in each group at 4, 24 and 72 h after ROSC. The mRNA expressions of Drp1, Fis1, Mfn1, and Opa1 were determined by RT-PCR. Myocardial ATP content and mitochondrial respiratory function were measured. The histopathologic changes of myocardial tissue were observed under light microscope. One-way analysis of variance (ANOVA) was use to compare quantitative data, and LSD- t test was used for comparison between groups. Results:Compared with the sham group, the protein and mRNA expressions of Drp1 and Fis1 were increased (all P<0.05) and the protein and mRNA expressions of Mfn1 and Opa1 were decreased (all P<0.05) in the PR 4 h and PR 24 h groups. However, there were no statistical differences in the protein and mRNA expressions of Drp1, Fis1, Mfn1, and Opa1 in the PR 72 h group compared with the sham group (all P>0.05). Compared with the sham group, the levels of ATP content [(4.53±0.76) nmol/g protein vs. (8.57±0.44) nmol/g protein and (5.58±0.58) nmol/g protein vs. (8.57±0.44) nmol/g protein] and mitochondrial respiratory control rate [(2.47±0.38) vs. (3.45±0.32) and (2.97±0.24) vs. (3.45±0.32)] were obviously decreased in the PR 4 h and PR 24 h groups (all P<0.05). There were no statistically significant differences in the ATP content [(7.73±0.95) nmol/g protein vs. (8.57±0.44) nmol/g protein] and mitochondrial respiratory control ratio [(3.39±0.34) vs. (3.45±0.32)] between the PR 72 h group and the sham group (all P>0.05). The pathological damage of myocardial tissue was obvious in the PR 4 h group, and was improved significantly in the PR 72 h group. Conclusions:The imbalance of mitochondrial fission and fusion is probably involved in the pathological process of myocardial injury after ROSC, which may be related to mitochondrial dysfunction.

20.
Asian Pacific Journal of Tropical Biomedicine ; (12): 141-147, 2022.
Artigo em Chinês | WPRIM | ID: wpr-950193

RESUMO

Cardiovascular diseases cause significant morbidity and mortality worldwide, incurring a major public health burden. Gastrodia elata Blume is a traditional Chinese herbal medicine that has been widely used to treat central nervous system and cardiovascular diseases. Gastrodin, as the major active component in Gastrodia elata Blume, can confer protection against cardiovascular diseases. In this review, we summarize the anti-inflammatory actions, anti-cardiac hypertrophy, anti-hypertension, anti-atherosclerosis, and angiogenic effects of gastrodin, as well as its protective effects on vascular cells and against myocardial ischemia-reperfusion injury. The medical potential of gastrodin in diabetes-related cardiovascular diseases is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA