Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica B ; (6): 3561-3574, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1011127

RESUMO

WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,β-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1'-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1'-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.

2.
Chinese Journal of Biotechnology ; (12): 1845-1857, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887767

RESUMO

Non-ribosomal peptide synthetases catalyze the biosynthesis of structurally and functionally diverse non-ribosomal peptide natural products, which have broad applications in pharmaceutical, agricultural, and industrial sectors. Engineered non-ribosomal peptide synthetases can be used to produce novel non-ribosomal peptides through combinatorial biosynthesis. This conforms to the concept of green chemistry, thus attracts increasing attention across the world. Herein, three different engineering strategies were summarized, and recent advances in this field were reviewed.


Assuntos
Produtos Biológicos , Peptídeo Sintases/genética , Peptídeos , Engenharia de Proteínas
3.
Chinese Herbal Medicines ; (4): 98-104, 2021.
Artigo em Chinês | WPRIM | ID: wpr-953689

RESUMO

Objective: Peptidyl alkaloids, a series of important natural products can be assembled by fungal non-ribosomal peptide synthetases (NRPSs). However, many of the NRPSs associated gene clusters are silent under laboratory conditions, and the traditional chemical separation yields are low. In this study, we aim to discovery and efficiently prepare fungal peptidyl alkaloids assembled by fungal NRPSs. Methods: Bioinformatics analysis of gene cluster containing NRPSs from the genome of Penicillium thymicola, and heterologous expression of the putative gene cluster in Aspergillus nidulans were performed. Isolation, structural identification, and biological evaluation of the product from heterologous expression were carried out. Results: The putative tri-modular NRPS AncA was heterologous-expressed in A. nidulans to give anacine (1) with high yield, which showed moderate and selective cytotoxic activity against A549 cell line. Conclusion: Heterologous expression in A. nidulans is an efficient strategy for mining fungal peptidyl alkaloids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA