Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Protein & Cell ; (12): 239-257, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929163

RESUMO

Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development in vitro and provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an in vitro human organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.


Assuntos
Humanos , COVID-19 , Diabetes Mellitus/terapia , Ilhotas Pancreáticas , Organoides , SARS-CoV-2
2.
Protein & Cell ; (12): 315-327, 2017.
Artigo em Inglês | WPRIM | ID: wpr-757335

RESUMO

Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.


Assuntos
Animais , Humanos , Pesquisa Biomédica , Edição de Genes , Métodos , Modelos Biológicos , Organoides , Metabolismo , Células-Tronco Pluripotentes , Metabolismo , Medicina de Precisão , Métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA