Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Chinês | WPRIM | ID: wpr-888202

RESUMO

Error self-detection based on error-related potentials (ErrP) is promising to improve the practicability of brain-computer interface systems. But the single trial recognition of ErrP is still a challenge that hinters the development of this technology. To assess the performance of different algorithms on decoding ErrP, this paper test four kinds of linear discriminant analysis algorithms, two kinds of support vector machines, logistic regression, and discriminative canonical pattern matching (DCPM) on two open accessed datasets. All algorithms were evaluated by their classification accuracies and their generalization ability on different sizes of training sets. The study results show that DCPM has the best performance. This study shows a comprehensive comparison of different algorithms on ErrP classification, which could give guidance for the selection of ErrP algorithm.


Assuntos
Algoritmos , Encéfalo , Interfaces Cérebro-Computador , Análise Discriminante , Eletroencefalografia , Máquina de Vetores de Suporte
2.
Artigo em Chinês | WPRIM | ID: wpr-687588

RESUMO

Error related negativity (ERN) is generated in frontal and central cortical regions when individuals perceive errors. Because ERN has low signal-to-noise ratio and large individual difference, it is difficult for single trial ERN recognition. In current study, the optimized electroencephalograph (EEG) channels were selected based on the brain topography of ERN activity and ERN offline recognition rate, and the optimized EEG time segments were selected based on the ERN offline recognition rate, then the low frequency time domain and high frequency time-frequency domain features were analyzed based on wavelet transform, after which the ERN single detection algorithm was proposed based on the above procedures. Finally, we achieved average recognition rate of 72.0% ± 9.6% in 10 subjects by using the sample points feature in 0~3.9 Hz and the power and variance features in 3.9~15.6 Hz from the EEG segments of 200~600 ms on the selected 6 channels. Our work has the potential to help the error command real-time correction technique in the application of online brain-computer interface system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA