Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 568-571, 2008.
Artigo em Chinês | WPRIM | ID: wpr-260109

RESUMO

Summary: The regulation of hypoxic response elements on the expression of vascular endothelial growth factor (VEGF) gene transfected to primary cultured rat skeletal myoblasts under hypoxic environment was investigated, pEGFP-C3-9HRE-CMV-VEGF vector was constructed with molecular biology technique and transfected to primary cultured rat skeletal myoblasts by lipofectamine in vitro. Gene expression of transfected myoblasts was detected by RT-PCR, Western blot and fluorescence microscope under different oxygen concentrations and different hypoxia time. The results showed that in hypoxia group, the VEGF gene bands were seen and with the decrease of oxygen concentrations and prolongation of hypoxia time, the expression of VEGF mRNA was obviously increased.Under hypoxic environment, the expression of VEGF protein in the transfected myoblasts was significantly increased. EGFP was expressed only under hypoxic environment but not under normoxic environment. It was concluded that hypoxia promoter could be constructed with HRE and regulate the expression of VEGF gene under hypoxic and normoxic environment, which could enhance the reliability of gene therapy.

2.
Journal of Geriatric Cardiology ; (12): 168-170, 2006.
Artigo em Chinês | WPRIM | ID: wpr-473412

RESUMO

Myocardial regeneration is an exciting new frontier for the treatment of heart disease. Many approaches are currently being tested. The use of autologous skeletal myoblasts has been the earliest, with over 10 years of research having been conducted.Current progress in the area of skeletal myoblasts for cardiac regeneration is presented. Reviewed is work from both pre-clinical and clinical studies. Work in this area continues to progress and definitive studies to assess efficacy of myoblasts for heart failure either have been initiated or will be initiated shortly. One result that is clear is that myoblasts can survive and form myotubes and myofibers in the area of myocardial infarction. In the early clinical trials, arrhythmia was a concern. However, further studies have shown that the risk was assumed prematurely based on limited human studies. Myoblasts, therefore, provide a highly promising treatment for heart disease. (J Geriatr Cardiol 2006;3 :168-70.)

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA