RESUMO
Since the application of biomedical nanotechnology in the field of drug delivery breathes new life into the research and development of high-end innovative agents, a substantial number of novel nano-drug delivery systems (nano-DDSs) have been successively developed and applied in the clinical practice. Among them, small molecule pure drug and prodrug-based nanoassemblies have grasped great attention, owing to the facile fabrication, ultrahigh drug loading and feasible industrial production. Herein, we provide an overview on the latest updates of small-molecule nanoassemblies. Firstly, the self-assembled prodrug-based nano-DDSs are introduced, including nanoassemblies formed by amphiphilic monomeric prodrugs, hydrophobic monomeric prodrugs and dimer monomeric prodrugs. Then, the recent advances on nanoassemblies of small molecule pure chemical drugs and biological drugs are presented. Furthermore, carrier-free small-molecule hybrid nanoassemblies of pure drugs and/or prodrugs are summarized and analyzed. Finally, the rational design, application prospects and clinical challenges of small-molecule self-assembled nano-DDSs are discussed and highlighted. This review aims to provide scientific reference for constructing the next generation of nanomedicines.
RESUMO
Compared with normal tissues and cells, the tumor microenvironment has significant differences. For example, glutathione-related metabolic enzymes and reactive oxygen species are highly expressed in different subcellular structures, resulting in an unbalanced redox state. Aiming at the specific redox state in tumor tissues and cells, a series of small molecule prodrug self-assembled nanoparticles can be designed and connected by intelligent response linkers including disulfide bonds, sulfide bonds, and selenium bonds, thioketal bonds, etc. The in vitro and in vivo efficiency and metabolic mode of these nanoparticles are related to the type of linker. This review will summarize the tumor redox microenvironment, the design of intelligent responsive small molecule prodrug nanoparticles, and the metabolic pathways of small molecule prodrug nanoparticles with different connecting linkers and their relationship with drug efficacy.