RESUMO
OBJECTIVES@#This study aims to investigate the effects of tumor-stromal fibroblasts (TSFs) on the proliferation, invasion, and migration of salivary gland pleomorphic adenoma (SPA) cells in vitro.@*METHODS@#Salivary gland pleomorphic adenoma cells (SPACs), TSFs, and peri-tumorous normal fibroblasts (NFs) were obtained by tissue primary culture and identified by immunocytochemical staining. The conditioned medium was obtained from TSF and NF in logarithmic phase. SPACs were cultured by conditioned medium and treated by TSF (group TSF-SPAC) and NF (group NF-SPAC). SPACs were used as the control group. The proliferation, invasion, and migration of the three groups of cells were detected by MTT, transwell, and scratch assays, respectively. The expression of vascular endothelial growth factor (VEGF) in the three groups was tested by enzyme linked immunosorbent assay (ELISA).@*RESULTS@#Immunocytochemical staining showed positive vimentin expression in NF and TSF. Results also indicated the weak positive expression of α-smooth muscle actin (SMA) and fibroblast activation protein (FAP) in TSFs and the negative expression of α-SMA and FAP in NFs. MTT assay showed that cell proliferation in the TSF-SPAC group was significantly different from that in the NF-SPAC and SPAC groups (P<0.05). Cell proliferation was not different between the NF-SPAC and SPAC groups (P>0.05). Transwell and scratch assays showed no difference in cell invasion and migration among the groups (P>0.05). ELISA showed that no significant difference in VEGF expression among the three groups (P>0.05).@*CONCLUSIONS@#TSFs may be involved in SPA biological behavior by promoting the proliferation of SPACs but has no effect on the invasion and migration of SPACs in vitro. Hence, TSF may be a new therapeutic target in SPA treatment.
Assuntos
Humanos , Adenoma Pleomorfo/metabolismo , Fator A de Crescimento do Endotélio Vascular , Meios de Cultivo Condicionados/metabolismo , Fibroblastos/metabolismo , Glândulas Salivares/metabolismoRESUMO
Objective To investigate the expressions ofα‐SMA in different esophageal stromal fibroblasts in esophageal car‐cinogenesis .Methods IHC method was uesd to detect the expression of α‐SMA protein in stromal fibroblasts of twenty normal e‐sophageal tissues ,eighty precancerous lesions and fifty esophageal carcinomas respectively .Three kinds of esophageal stromal fibro‐blasts were cultured primarily and cells immunohistochemical staining was carrired out after being purified .Expression of α‐SMA was detected by RT PCR .Results IHC results showed thatα‐SMA expressions in normal ,precancerous and cancerous lesions were of significant differences .RT‐PCR results showed thatα‐SMA expressions were different significantly among three kinds of fibro‐blasts .Conclusion Esophageal stromal fibroblasts were activated with carcinogenensis .AFs was possibly the origion of CAFs .
RESUMO
This study was to evaluate the expression of vascular endothelial growth factor receptors (VEGFRs) in tumor and stromal cells of tougue squamous cell carcinoma (SCC). We also wanted to characterize the differences, from the angiogenic aspect, between cancer-associated stromal cells and non-malignant stromal cells. Paraffin-embedded tumor specimens from eleven patients with tongue SCCs were studied. Immunohistochemical staining for VEGFR-1,-2, and -3 was performed on the tumor cells, stromal fibroblasts and tumor-associated macrophages of the specimens. The expression of all 3 receptors was detected in the tumor cells themselves of the biopsy specimens. All 3 receptors were also expressed on stromal cells, except that VEGFR-2 was not expressed in stromal fibroblasts. In radical excision specimens, the staining intensity for VEGFR-1, -2 in the tumor cells and VEGFR-1,-3 in the tumor-associated macrophages was significantly lower than that in the biopsy specimens (P < 0.05). By using the general marker of fibroblast and macrophage, 5B5 and CD68, respectively, we performed double immunofluorescence staining for 5B5 and each VEGFR in the stromal fibroblasts and for CD68 and each VEGFR in the tumor-associated macrophages of the radical excision specimens. We used 4 cases of fibroma and 4 cases of chronic inflammation tissue as the controls. It was found that only each marker was expressed in the control group, however, 5B5/VEGFR-1 and 5B5/VEGFR-3 in the stromal fibroblasts, and CD68/VEGFR-1 and CD68/VEGFR-3 in the tumor-associated macrophages were double stained in the radical excision specimens. Although our study used small number of specimens, the results of our study showed that in tongue SCC, in association with the angiogenesis, the stromal cells showed the activated phenotype and this was different from the nonmalignant stromal cells.