Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 4635-4646, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008047

RESUMO

Insufficient catalytic efficiency of flavonoid 6-hydroxylases in the fermentative production of scutellarin leads to the formation of at least about 18% of by-products. Here, the catalytic mechanisms of two flavonoid 6-hydroxylases, CYP82D4 and CYP706X, were investigated by molecular dynamics simulations and quantum chemical calculations. Our results show that CYP82D4 and CYP706X have almost identical energy barriers at the rate-determining step and thus similar reaction rates, while the relatively low substrate binding energy of CYP82D4 may facilitate product release, which is directly responsible for its higher catalytic efficiency. Based on the study of substrate entry and release processes, the catalytic efficiency of the L540A mutation of CYP82D4 increased by 1.37-fold, demonstrating the feasibility of theoretical calculations-guided engineering of flavonoid 6-hydroxylase. Overall, this study reveals the catalytic mechanism of flavonoid 6-hydroxylases, which may facilitate the modification and optimization of flavonoid 6-hydroxylases for efficient fermentative production of scutellarin.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Apigenina , Glucuronatos
2.
Chinese Journal of Biotechnology ; (12): 1450-1458, 2020.
Artigo em Chinês | WPRIM | ID: wpr-826831

RESUMO

Heparin and heparan sulfate are a class of glycosaminoglycans for clinical anticoagulation. Heparosan N-sulfate-glucuronate 5-epimerase (C5, EC 5.1.3.17) is a critical modifying enzyme in the synthesis of heparin and heparan sulfate, and catalyzes the inversion of carboxyl group at position 5 on D-glucuronic acid (D-GlcA) of N-sulfoheparosan to form L-iduronic acid (L-IdoA). In this study, the heparin C5 epimerase gene Glce from zebrafish was expressed and molecularly modified in Escherichia coli. After comparing three expression vectors of pET-20b (+), pET-28a (+) and pCold Ⅲ, C5 activity reached the highest ((1 873.61±5.42) U/L) with the vector pCold Ⅲ. Then we fused the solution-promoting label SET2 at the N-terminal for increasing the soluble expression of C5. As a result, the soluble protein expression was increased by 50% compared with the control, and the enzyme activity reached (2 409±6.43) U/L. Based on this, site-directed mutations near the substrate binding pocket were performed through rational design, the optimal mutant (V153R) enzyme activity and specific enzyme activity were (5 804±5.63) U/L and (145.1±2.33) U/mg, respectively 2.41-fold and 2.28-fold of the original enzyme. Modification and expression optimization of heparin C5 epimerase has laid the foundation for heparin enzymatic catalytic biosynthesis.


Assuntos
Animais , Carboidratos Epimerases , Química , Genética , Escherichia coli , Expressão Gênica , Heparina , Metabolismo , Heparitina Sulfato , Metabolismo , Ácido Idurônico , Metabolismo , Proteínas de Peixe-Zebra , Química , Genética
3.
Protein & Cell ; (12): 584-599, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828753

RESUMO

The cyclic GMP-AMP (cGAMP) synthase (cGAS) plays a critical role in host defense by sensing cytosolic DNA derived from microbial pathogens or mis-located cellular DNA. Upon DNA binding, cGAS utilizes GTP and ATP as substrates to synthesize cGAMP, leading to MITA-mediated innate immune response. In this study, we identified the phosphatase PPP6C as a negative regulator of cGAS-mediated innate immune response. PPP6C is constitutively associated with cGAS in un-stimulated cells. DNA virus infection causes rapid disassociation of PPP6C from cGAS, resulting in phosphorylation of human cGAS S435 or mouse cGAS S420 in its catalytic pocket. Mutation of this serine residue of cGAS impairs its ability to synthesize cGAMP upon DNA virus infection. In vitro experiments indicate that S420-phosphorylated mcGAS has higher affinity to GTP and enzymatic activity. PPP6C-deficiency promotes innate immune response to DNA virus in various cells. Our findings suggest that PPP6C-mediated dephosphorylation of a catalytic pocket serine residue of cGAS impairs its substrate binding activity and innate immune response, which provides a mechanism for keeping the DNA sensor cGAS inactive in the absence of infection to avoid autoimmune response.

4.
Protein & Cell ; (12): 584-599, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828589

RESUMO

The cyclic GMP-AMP (cGAMP) synthase (cGAS) plays a critical role in host defense by sensing cytosolic DNA derived from microbial pathogens or mis-located cellular DNA. Upon DNA binding, cGAS utilizes GTP and ATP as substrates to synthesize cGAMP, leading to MITA-mediated innate immune response. In this study, we identified the phosphatase PPP6C as a negative regulator of cGAS-mediated innate immune response. PPP6C is constitutively associated with cGAS in un-stimulated cells. DNA virus infection causes rapid disassociation of PPP6C from cGAS, resulting in phosphorylation of human cGAS S435 or mouse cGAS S420 in its catalytic pocket. Mutation of this serine residue of cGAS impairs its ability to synthesize cGAMP upon DNA virus infection. In vitro experiments indicate that S420-phosphorylated mcGAS has higher affinity to GTP and enzymatic activity. PPP6C-deficiency promotes innate immune response to DNA virus in various cells. Our findings suggest that PPP6C-mediated dephosphorylation of a catalytic pocket serine residue of cGAS impairs its substrate binding activity and innate immune response, which provides a mechanism for keeping the DNA sensor cGAS inactive in the absence of infection to avoid autoimmune response.

5.
Electron. j. biotechnol ; 8(2): 14-25, Aug. 2005. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-640471

RESUMO

Enterobacter sp. NRG4 was shown to excrete chitinase into the culture supernatant when cultivated in medium containing chitin. A 60 kDa extracellular chitinase was purified to homogeneity and characterized. The enzyme hydrolyzed swollen chitin, colloidal chitin, regenerated chitin and glycol chitin but did not hydrolyze chitosan. The chitinase exhibited Km and Vmax values of 1.43 mg ml-1 and 83.33 µM µg-1 h-1 for swollen chitin, 1.41 mg ml-1 and 74.07 µM µg-1 h-1 for colloidal chitin, 1.8 mg ml-1 and 40 µM µg-1 h-1 for regenerated chitin and 2.0 mg ml-1 and 33.33 µM µg-1 h-1 for glycol chitin, respectively. The optimal temperature and pH for activity were 45ºC and pH 5.5, respectively. Mg2+, K+ and Ca2+ stimulated chitinase activity by 13, 16 and 18%, respectively whereas Cu2+, Co2+, Ag+ and Hg2+ inhibited chitinase activity by 9.7, 15, 22 and 72.2%, respectively at 1 mM concentration. N-bromosuccinamide (NBS) at 1 mM and iodoacetamide at 10 mM concentration completely inhibited the enzyme activity. Dithiobisnitrobenzoic acid (DTNB) at 10 mM concentration inhibited chitinase activity by 97.2%. Chitin was hydrolyzed to chitobiose and N-acetyl D-glucosamine when incubated with the purified enzyme. The hydrolysis pattern of the purified enzyme indicated that the chitinase was an endochitinase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA