Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Chinês | WPRIM | ID: wpr-1021322

RESUMO

BACKGROUND:The treatment of distal tibial fractures with soft tissue injury has always been challenging,and the new retrograde tibial nailing is a new choice.Up to now,there were few reports on the biomechanical properties between the new retrograde tibial nailing,anterograde intramedullary nailing and supercutaneous locking plate. OBJECTIVE:To explore the biomechanical stability of new retrograde tibial nailing,antegrade intramedullary nailing and supercutaneous locking plate in the treatment of distal tibial fractures with soft tissue injury using finite element analysis so as to offer a scientific foundation for clinical application. METHODS:The finite element model of transverse distal tibia fracture was established by relevant software utilizing the CT data of the tibia from a 42-year-old healthy male.Retrograde tibial nailing,antegrade intramedullary nailing and supercutaneous locking plate finite element models were assembled under the principle of fracture fixation.Finally,meshing,applying loads,and data processing were accomplished with the ANSYS 2019 software.Moreover,the stress distribution and displacement of the tibia and internal fixation of each model were compared. RESULTS AND CONCLUSION:(1)The displacement of fracture end in the three groups increased with the increase of load.In all mode loads,the average displacement of the fracture end was the least in the retrograde tibial nailing group,followed by the supercutaneous locking plate group,and the highest in the antegrade intramedullary nailing group.At 800 N vertical load,the displacement difference of the fracture end was statistically significant(P<0.05).There was no statistical significance in other load modes.(2)Under different loads,the tibial stress in the three groups was the highest in the middle of the tibia,and gradually decreased to the proximal and distal ends.The stress distribution of the tibial shaft was the highest in the retrograde tibial nailing group,followed by the supercutaneous locking plate group,and the least in the antegrade intramedullary nailing group.(3)Under different loads,the stress of the tibial stress raiser in the three groups was significantly higher in the supercutaneous locking plate group than in the other two groups,with statistical significance(P<0.05).(4)Under different loads,the stress of the fixators in the three groups was the largest in the supercutaneous locking plate group,followed by the retrograde tibial nailing group,and the minimum in the antegrade intramedullary nailing group.There were significant differences in the stress of fixator stress raiser among the three groups under different loading modes(P<0.05).(5)It is indicated that all three fixation methods have the good anti-rotation ability and axial stability.Retrograde tibial nail shows better biomechanical stability.

2.
Artigo em Chinês | WPRIM | ID: wpr-1021772

RESUMO

BACKGROUND:The treatment of distal tibial comminuted fractures with soft tissue injury has always been challenging.The new retrograde tibial nailing and supercutaneous locking plate are important treatment methods,but their strain and stress shielding at the fracture end during different periods of fracture healing and different load conditions have not been reported. OBJECTIVE:To explore the biomechanical stability of retrograde tibial nailing and supercutaneous locking plate in different periods of fracture healing by finite element analysis to offer a scientific foundation for clinical application and rehabilitation exercise. METHODS:The finite element model of distal tibial comminuted fracture was established by utilizing the CT data of the tibia from a 40-year-old healthy male.Retrograde tibial nailing,supercutaneous locking plate,and callus models were assembled in accordance with the principle of fracture fixation.The finite element analysis was performed using ANSYS software to compare the displacement of the fracture end,the stress shielding of the tibia,the stress of the callus,and the stress distribution of the tibia and the fixation device during different periods of fracture healing. RESULTS AND CONCLUSION:(1)The relative displacement of the tibial fracture decreased gradually with the healing of the fracture,and the displacement decreased significantly after 3 months.At 0 and 1 months after operation,the vertical displacement and total displacement of the supercutaneous locking plate group were higher than those in the retrograde intramedullary nail group.The Z-axis displacement(horizontal medial and lateral displacement)of the two fixation methods was more obvious than the X-axis and Y-axis,and the Z-axis displacement of supercutaneous locking plate group was the most obvious.The maximum Z-axis displacement of the two fixation methods was located on the outside of the tibia,and the minimum displacement was located on the inside of the tibia.(2)The stress shielding rate at different periods of fracture healing gradually decreased with time.The stress shielding rate of the retrograde intramedullary nail was higher than that of the supercutaneous locking plate at different stages of fracture healing.After 3 months,the stress shielding rate of the supercutaneous locking plate was reduced to about 4%,and the stress shielding rate of the retrograde intramedullary nail was reduced to about 40%.(3)The stress of the stress concentration site of the callus in the two fixation methods increased with the increase of the load,and the stress of the callus in the supercutaneous locking plate group was always greater than that in the retrograde intramedullary nail group.The maximum stress distribution of the callus was approximately equally distributed among the two modes of fixation,both in the lateral portion of the tibia.(4)As the fracture healed,the maximum stress of the tibia in the two groups decreased gradually,and the stress in the supercutaneous locking plate group was always greater than that in the retrograde intramedullary nail group.The average stress of the maximum stress area of the tibia in the supercutaneous locking plate group under 1 500 N load was 285 MPa,while that in the retrograde intramedullary nail group was 26 MPa.(5)As the fracture healed,the stress of the fixation device in the two groups decreased gradually,and the stress in the supercutaneous locking plate group was significantly higher than that in the retrograde intramedullary nail group.After 3 months,the stress of the two fixation devices decreased significantly.(6)It is indicated that in the early stage of fracture healing,the strain on the fracture end in the retrograde intramedullary nail group is small,and the maximum stress of the tibia is moderate,allowing early loaded.The fractured ends in the supercutaneous locking plate group had too large strain and too large maximum stress of the tibia,which needed to be partially loaded under protection and could not be fully loaded.In the middle and late stages of fracture healing,the tibial retrograde intramedullary nail and the supercutaneous locking plate could be completely loaded,and the stress shielding rate of the supercutaneous locking plate was significantly lower than the tibial retrograde intramedullary nail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA