Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Pharmacological Bulletin ; (12): 62-69, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013591

RESUMO

Aim To study the effect of menthol on hypobaric hypoxia-induced pulmonary arterial hypertension and explore the underlying mechanism in mice. Methods 10 to 12 weeks old wild type (WT) mice and TRPM8 gene knockout (TRPM8

2.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1458-1466, 2022.
Artigo em Chinês | WPRIM | ID: wpr-1015814

RESUMO

TRPM8 (transient receptor potential melastatin 8), also known as a cold and menthol receptor and a member of the TRP (transient receptor potential) channel superfamily, locates on the cell membrane or organelle membrane.. TRPM8 is a non-selective cation channel, which can be used as either a cold and heat sensor or cold and pain sensor to conduct signal transduction. It plays an important role in maintaining intracellular homeostasis and controlling ion in cells. It has been found that PTM (post-translational modification) of TRPM8 affects the occurrence and development of many diseases by regulating the function of TRPM8 channel. Therefore, it is necessary to explore the PTM process of TRPM8 to gain a deeper understanding for the function and regulatory mechanism of TRPM8. At present, several types of post-translational modifications of TRPM8 have been reported, including phosphorylation, ubiquitination and glycosylation, which can regulate protein interactions and change the activity of TRPM8 ion channels, leading to modulation of cell proliferation, migration and apoptosis. It is noteworthy that the expression of TRPM8 level is closely related to many kinds of cancers, such as prostate cancer, bladder cancer and breast cancer. This review focus on the structure of TRPM8 ion channels, systematically elaborate the translational modifications, activator and antagonist of TRPM8 protein, and the regulation of some proteins on TRPM8 channel activity. At the same time, we summarize the recent progress of TRPM8 in prostate cancer, bladder cancer and breast cancer, which would provide new directions and new ideas for the treatment of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA