Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Japanese Journal of Physical Fitness and Sports Medicine ; : 269-278, 2006.
Artigo em Japonês | WPRIM | ID: wpr-362370

RESUMO

It has recently demonstrated that central fatigue during sustained maximal voluntary contraction (MVC) progresses faster in the presence of delayed onset muscle soreness due to eccentric contractions than in normal states (Endoh et al., 2005). However, it remains to be clarified whether these findings are related to muscle damage or muscle pain induced by eccentric contractions. The present study investigated which factor plays a more critical role in the earlier onset of central fatigue during sustained MVC with muscle pain induced by injecting hypertonic saline. Ten healthy male right-handed subjects (age, 21~32 yrs.) were asked to perform brief MVCs (~3 sec) before and after injection of isotonic saline (0.9%, 1.0 ml, ISO) or hypertonic saline (5.25%, 1.0 ml, HYP) into the left biceps brachii. The subjects then performed 1 min MVC (fatigue test) with isometric elbow flexion was done in ISO or HYP condition or intact control condition (CON). During these contractions, transcranial magnetic stimulation was delivered to the contralateral motor cortex to evaluate voluntary activation (VA), the motor evoked potential (MEP) and electromyographic (EMG) silent period (SP). Ratio of root mean square of the EMG and elbow flexion force (EMGrms/F) was also measured.The peak pain induced by the injection of HYP was significantly higher than that of ISO (p<0.01). There was no significant difference in either the maximum size of the M response or the twitch force between ISO and HYP (p>0.05). However, during the brief MVCs, both maximal force (p<0.01) and VA (p<0.05) for HYP were significantly decreased compared to those for ISO. During the fatigue test, although MVC, VA, MEP and SP were significantly altered (p<0.05~0.01), there was no significant difference among CON, ISO and HYP (p>0.05). There was no significant difference in EMGrms during the fatigue test (p>0.05).These results suggest that peripheral force-producing capacity remained intact after the injection of ISO and HYP during sustained MVC, and that progression of central fatigue during sustained MVC was less affected by the increased group III and IV afferent activity induced by HYP.

2.
Japanese Journal of Physical Fitness and Sports Medicine ; : 211-220, 2004.
Artigo em Japonês | WPRIM | ID: wpr-372105

RESUMO

The present study investigated how resistance training affects behaviors related to central and peripheral fatigue during a sustained maximal voluntary contraction (MVC) . The subjects were well-trained (TR, n=8) and sedentary untrained (UT, n=6) males. The subjects were asked to repetitively perform 3 sets of MVC (elbow flexion) for 1 min with a rest interval of 1 min. Transcranial magnetic stimulation (TMS) was delivered to the contralateral motor cortex to evoke the motor evoked potential (MEP) and electromyographic (EMG) silent period (SP) after the MEP. Ratio of root mean square (RMS) of the EMG and elbow flexion force (RMS/F) was also calculated.<BR>The time course of the decrease in elbow flexion force that was standardized with respect to the maximal value obtained at the beginning of the first MVC was almost identical in both TR and UT. At the end of the task, the elbow flexion force decreased to around 30 % of the initial value in both groups. Decrease in voluntary activation (VA) estimated by the increment of the force after TMS was significantly larger in UT (77.3%) than in TR (88.2%) at the end of the task. Although the increase in MEP during the first set was significantly greater in UT than in TR, elongation of SP was significantly larger in UT than in TR. Increase in RMS/F, which is a manifestation of peripheral fatigue, was significantly larger in TR than in UT.<BR>These results suggest that decrease in MVC in UT and in TR is respectively more attributable to central and peripheral fatigue, and that inhibitory inputs to motor cortex were larger in UT than in TR. It is concluded that expression of central and peripheral fatigue is affected by resistance training.

3.
Japanese Journal of Physical Fitness and Sports Medicine ; : 51-64, 2003.
Artigo em Japonês | WPRIM | ID: wpr-372020

RESUMO

The purpose of this study was to examine the effects of short-term immobilization on the maximum voluntary contraction (MVC) force. The first dorsal interosseus (FDI) of 10 healthy male adults was immobilized for 1 week using casting tape. Atrophy of the muscle was estimated from a cross sectional view of magnetic resonance images (MRI) . To clarify the factors of a peripheral neuromuscular system contributing to the change in the MVC force, twitch force at rest was measured. The contribution of central factors was estimated from a voluntary activation (VA) index, which was obtained by the twitch interpolation method.<BR>The MRI showed no significant changes in the cross sectional area. The MVC force declined after immobilization (p<0.01), and recovered after 1 week from the termination of immobilization (p<0.01) . Both the twitch force at rest and the VA at MVC declined after immobilization (p<0.01), and recovered after 1 week (p<0.05) .<BR>The results indicate that the temporary decline of the MVC force was not accompanied by atrophy of the muscle. Furthermore the decline of the MVC was caused both by the deterioration of peripheral and central functions in the neuromuscular system. Possible factors in the peripheral and central neuromuscular systems affected by the immobilization were discussed.

4.
Japanese Journal of Physical Fitness and Sports Medicine ; : 315-328, 2000.
Artigo em Japonês | WPRIM | ID: wpr-371913

RESUMO

The purpose of this study is to examine the validity of muscle fatigue evaluation using maximum voluntary torque (MVT), and to identify the dependence of individual's tolerance for fatigue on the capacity to exert MVT. In 14 young male subjects (10 regular exercisers and 4 sedentary), MVT was measured during isometric knee extension, and voluntary activation (VA), which reflects motor unit activation, was evaluated using the twitch interpolation technique. In addition, the maximum endurance time (ET) was measured, and behavior of the mean power frequency (MPF) and the average rectified value (ARV) of surface EMGs from the vastus lateralis muscle were analyzed during constant force isometric contractions of 60% MVT (short-duration fatigue task; SDF task) and 20% MVT (long-duration fatigue task; LDF task) . Correlations were examined among these five variables.<BR>The results were as follows:<BR>1) Subjects were divided into a high voluntary activation group (HVA group) and a low voluntary activation group (LVA group) . Four sedentary subjects were included in the latter group.<BR>2) MVT was significantly larger in the HVA group than in the LVA group (p<0.01) . A significant positive correlation (r=0.72) was found between MVT and VA (p<0.01) .<BR>3) A significant negative correlation (r=-0.71) was found between MVT and endurance time (ET) for the LDF task (p<0.01) . The ET was significantly longer in the LVA group than in the HVA group (p<0.01) .<BR>4) The MPF of voluntary EMG decreased consistently, as ARV increased during isometric contraction in both tasks (p<0.01), indicating the development of fatigue in the muscle. The final change of MPF relative to the initial value was significantly greater in the SDF task than in the LDF task (p<0.05) .<BR>5) A significant correlation (r=-0.83) was seen between the relative change in MPF and ARV in the SDF task (p<0.01) .<BR>6) For the SDF task, the final change of MPF and ARV relative to the initial value was significantly greater in the LVA group than in the HVA group (p<0.05) .<BR>These results indicate that tolerance for local muscle fatigue usually evaluated as maximum endurance time, may depend on individual differences in VA, the VA, in turn, depending on adapta-tion to exercise, and that there appears to exist a corresponding adaptative strategy of the neuromuscular system during fatiguing contractions. Usefulness of our procedure using the twitch interpolation technique in evaluating muscle fatigue was also suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA