Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Biomedical Engineering ; (6): 885-892, 2019.
Artigo em Chinês | WPRIM | ID: wpr-774128

RESUMO

Mouse animal models are the most commonly used experimental tools in scientific research, which have been widely favored by researchers. The animal model of mouse leukemia appeared in the 1930s. During the past 90 years, researchers have developed various types of mouse leukemia models to simulate the development and treatment of human leukemia in order to promote effectively the elucidation of the molecular mechanism of leukemia' development and progression, as well as the development of targeted drugs for the treatment of leukemia. Considering that to myeloid leukemia, especially acute myeloid leukemia, there currently is no good clinical treatment, it is urgent to clarify its new molecular mechanism and develop new therapeutic targets. This review focuses on the various types of mouse models about myeloid leukemia used commonly in recent years, including mouse strains, myeloid leukemia cell types, and modeling methods, which are expected to provide a reference for relevant researchers to select animal models during myeloid leukemia research.


Assuntos
Animais , Humanos , Camundongos , Modelos Animais de Doenças , Leucemia Mieloide Aguda
2.
Br J Med Med Res ; 2012 Apr-Jun; 2(2): 206-215
Artigo em Inglês | IMSEAR | ID: sea-162723

RESUMO

Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into immunodeficient rodents are the major preclinical approach for the development of novel cancer therapeutics. However, in these models the animals must be used only after the severe systemic immune suppression in order to ensure graft survival. Thus, additional new human brain tumor models without immune suppression of the recipient rodent may be required. Place and Duration of Study: Laboratory of Immunochemistry, V.P. Serbsky National Research Centre for Social and Forensic Psychiatry and Department of Nanobiotechnology, N.I. Pirogov Russian State Medical University and Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics between June 2009 and July 2010. Methodology: Brain tumor modeling was performed by intracerebral stereotactic implantation of cells to the healthy adult rats without any artificial immunodepression. Cells were implanted to the striatum region of ketamine-anesthetized rats at specific coordinates according to Swanson's rat brain atlas. Tumor growth was monitored weekly via registration of neurological signs and in vivo Bruker MRI system. Results: On the 21st day after implantation of C6 glioma, U251 or 293_CHI3L1 cells severe neurological deficit appeared in rats. Huge intracerebral tumors were found in each animal under investigation while no tumor growth was observed for at least 8 weeks in rats injected with empty vector-transfected 293 cells. Tumors contained the dense superficial cell layer and prominent lobules with central newly ingrowing blood vessels. Histological assay revealed displacement of median cerebral structures and hydrocephalus in contralateral hemisphere. All tumors were surrounded by numerous GFAP-positive reactive astrocytes. Conclusion: Positive results with transplantation of 293_CHI3L1 cells into adult rat brains without any immunosupression show the validity of this animal model. In all experiments such implantations provoked malignant tumor formation while there were no visible tumors in control rats. We believe this to be the first animal model of human brain tumor that displays the possibility to study various biologic features of and host therapeutic response to brain tumor in an immunocompetent host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA